A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
We present a set of techniques to characterize the viscoelastic mechanical properties of brain at the micro-, meso-, and macro-scales.
To design and engineer materials inspired by the properties of the brain, whether for mechanical simulants or for tissue regeneration studies, the brain tissue itself must be well characterized at various length and time scales. Like many biological tissues, brain tissue exhibits a complex, hierarchical structure. However, in contrast to most other tissues, brain is of very low mechanical stiffness, with Young's elastic moduli E on the order of 100s of Pa. This low stiffness can present challenges to experimental characterization of key mechanical properties. Here, we demonstrate several mechanical characterization techniques that have been adapted to measure the elastic and viscoelastic properties of hydrated, compliant biological materials such as brain tissue, at different length scales and loading rates. At the microscale, we conduct creep-compliance and force relaxation experiments using atomic force microscope-enabled indentation. At the mesoscale, we perform impact indentation experiments using a pendulum-based instrumented indenter. At the macroscale, we conduct parallel plate rheometry to quantify the frequency dependent shear elastic moduli. We also discuss the challenges and limitations associated with each method. Together these techniques enable an in-depth mechanical characterization of brain tissue that can be used to better understand the structure of brain and to engineer bio-inspired materials.
Most soft-tissues comprising biological organs are mechanically and structurally complex, of low stiffness compared to mineralized bone or engineered materials, and exhibit non-linear and time-dependent deformation. Compared to other tissues in the body, brain tissue is remarkably compliant, with elastic moduli E on the order of 100s of Pa 1. Brain tissue exhibits structural heterogeneity with distinct and interdigitated gray and white matter regions that also differ functionally. Understanding brain tissue mechanics will aid in the design of materials and computational models to mimic the response of the brain during injury, facilitate prediction of mechanical damage, and enable engineering of protective strategies. Additionally, such information can be used to consider design targets for tissue regeneration, and to better understand structural changes in brain tissue that are associated with diseases such as multiple sclerosis and autism. Here, we describe and demonstrate several experimental approaches that are available to characterize the viscoelastic properties of mechanically compliant tissues including brain tissue, at the micro-, meso-, and macro-scales.
At the microscale, we conducted creep-compliance and force relaxation experiments using atomic force microscope (AFM)-enabled indentation. Typically, AFM-enabled indentation is used to estimate the elastic modulus (or instantaneous stiffness) of a sample 2-4. However, the same instrument can also be used to measure microscale viscoelastic (time- or rate-dependent) properties 5-10. The principle of these experiments, shown in Figure 1, is to indent an AFM cantilevered probe into the brain tissue, maintain a specified magnitude of force or indentation depth, and measure the corresponding changes in indentation depth and force, respectively, over time. Using these data, we can calculate the creep compliance JC and relaxation modulus GR, respectively.
At the mesoscale, we conducted impact indentation experiments in fluid-immersed conditions that maintain the tissue structure and hydration levels, using a pendulum-based instrumented nanoindenter. The experimental setup is illustrated in Figure 2. As the pendulum swings into contact with the tissue, probe displacement is recorded as a function of time until the oscillating pendulum comes to rest within the tissue. From the resulting damped harmonic oscillatory motion of the probe, we can calculate the maximum penetration depth xmax, energy dissipation capacity K, and dissipation quality factor Q (which relates to the rate of energy dissipation) of the tissue 11,12.
At the macroscale, we used a parallel plate rheometer to quantify the frequency dependent shear elastic moduli, termed the storage modulus G' and loss modulus G", of the tissue. In this type of rheometry, we apply a harmonic angular strain (and corresponding shear strain) at known amplitudes and frequencies and measure the reactional torque (and corresponding shear stress), as shown in Figure 3. From the resulting amplitude and phase lag of the measured torque and geometric variables of the system, we can calculate G' and G" at applied frequencies of interest 13,14.
Access restricted. Please log in or start a trial to view this content.
Ethics Statement: All experimental protocols were approved by the Animal Research Committee of Boston Children's Hospital and comply with the National Institutes of Health Guide for the Care and Use of Laboratory Animals.
1. Mouse Brain Tissue Acquisition Procedures (for AFM-enabled indentation and impact indentation)
2. Pig Brain Tissue Acquisition Procedures (for rheology)
3. Atomic Force Microscope-enabled Indentation
4. Impact Indentation
5. Rheology
Access restricted. Please log in or start a trial to view this content.
Figure 4 shows representative indentation and force vs. time responses (Figure 4B,E) for creep compliance and force relaxation experiments, given an applied force or indentation depth (Figure 4A,D), respectively. Using these data and the geometry of the system, the creep compliance Jc(t) and force relaxation moduli GR(t) can be calculated for different regions of the brain (Figure 4C,F
Access restricted. Please log in or start a trial to view this content.
Each technique presented in this paper measures different facets of brain tissue's mechanical properties. Creep compliance and stress relaxation moduli are a measure of time-dependent mechanical properties. The storage and loss moduli represent rate-dependent mechanical properties. Impact indentation also measures rate-dependent mechanical properties, but in the context of energy dissipation. When characterizing tissue mechanical properties, both AFM-enabled indentation and rheology are commonly used methods. AFM-ena...
Access restricted. Please log in or start a trial to view this content.
The authors have nothing to disclose.
We acknowledge support of this work by the National Multiple Sclerosis Society and Simons Center for the Social Brain. BQ acknowledges support from the U.S. National Defense Science & Engineering Graduate Fellowship program.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Xylazine | Lloyd Laboratoried | perscription drug | |
Ketamine | AnaSed Injections | perscription drug | |
Vibratome (Vibrating blade microtome) | Leica | VT1200 | |
Hibernate-A Medium | Gibco | A1247501 | CO2-independent neural medium for adult tissue |
Atomic Force Microscope, MFP-3D-BIO | Asylum Research | - | |
Petri Dish Heater | Asylum Research | - | |
AFM Probe, 0.03 N/m, 10 µm radius borosilicate sphere | Novascan | PT.GS | |
Cell-Tak | Corning | 354240 | mussel-derived bioadhesive |
Sodium Bicarbonate | Sigma-Aldrich | S5761 | alternate suppliers can be used |
Sodium Hydroxide, 1 N | Sigma-Aldrich | 59223C | alternate suppliers can be used |
Instrumented Indenter, NanoTest Vantage | Micro Materials Ltd. | - | probe tip needs to be machined (steel flat punch, 1 mm diameter, 4-5 mm length) |
NanoTest Liquid Cell | Micro Materials Ltd. | - | |
Parallel Plate Rheometer MCR501 | Anton-Parr | - | |
PP25 | Anton-Parr | - | 25 mm diameter flat measurement plate |
Adhesive Sandpaper | McMaster-Carr | 4184A48 | alternate suppliers can be used |
Loctite 4013 Instant Adhesive | Henkel | 20268 | alternate suppliers can be used |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved