JoVE Logo
Faculty Resource Center

Sign In





Representative Results






Analysis of Brain Mitochondria Using Serial Block-Face Scanning Electron Microscopy

Published: July 9th, 2016



1Virginia Tech Carilion Research Institute, 2Renovo Neural Incorporated

Mitochondrial visualization and analysis from mammalian brain tissue is a challenging task. Here, we describe how three dimensional (3D) reconstruction analysis from the serial block-face scanning electron microscopy (SBFSEM) can be used to gain insights on the morphological and volumetric analysis of this critical energy generating organelle.

Human brain is a high energy consuming organ that mainly relies on glucose as a fuel source. Glucose is catabolized by brain mitochondria via glycolysis, tri-carboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS) pathways to produce cellular energy in the form of adenosine triphosphate (ATP). Impairment of mitochondrial ATP production causes mitochondrial disorders, which present clinically with prominent neurological and myopathic symptoms. Mitochondrial defects are also present in neurodevelopmental disorders (e.g. autism spectrum disorder) and neurodegenerative disorders (e.g. amyotrophic lateral sclerosis, Alzheimer's and Parkinson's diseases). Thus, there is an increased interest in the field for performing 3D analysis of mitochondrial morphology, structure and distribution under both healthy and disease states. The brain mitochondrial morphology is extremely diverse, with some mitochondria especially those in the synaptic region being in the range of <200 nm diameter, which is below the resolution limit of traditional light microscopy. Expressing a mitochondrially-targeted green fluorescent protein (GFP) in the brain significantly enhances the organellar detection by confocal microscopy. However, it does not overcome the constraints on the sensitivity of detection of relatively small sized mitochondria without oversaturating the images of large sized mitochondria. While serial transmission electron microscopy has been successfully used to characterize mitochondria at the neuronal synapse, this technique is extremely time-consuming especially when comparing multiple samples. The serial block-face scanning electron microscopy (SBFSEM) technique involves an automated process of sectioning, imaging blocks of tissue and data acquisition. Here, we provide a protocol to perform SBFSEM of a defined region from rodent brain to rapidly reconstruct and visualize mitochondrial morphology. This technique could also be used to provide accurate information on mitochondrial number, volume, size and distribution in a defined brain region. Since the obtained image resolution is high (typically under 10 nm) any gross mitochondrial morphological defects may also be detected.

Mitochondria are dynamic organelles which change their shape and location depending on the cellular cues and needs, in tight interaction with cell cytoskeleton, and in response to cellular events such as calcium currents in neurons 1. Mitochondria also interact with other cellular organelles e.g. endoplasmic reticulum, which in turn regulates their dynamics and metabolism2. Mitochondrial morphology shows heterogeneity in different cell types i.e. the shape of the organelle varies from tubular to that consisting of sheets, sacks and ovals 3. It has been shown that mitochondrial fusion and fission cycle proteins can reg....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Ethics Statement: Procedures involving animal subjects have been approved by the Institutional Animal Care and Use Committee (IACUC) at Virginia Tech.

Caution: Extreme precautions must be taken when handling and disposing several components used in this protocol. Before use, the local institutional guidelines and health and safety practices must be established and followed, particularly for osmium tetroxide, which is volatile and extremely poisonous, uranyl acetate, which is both a heavy metal and source of radioactivity, and lead nit.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

We demonstrate that the brain mitochondrial morphology and size is heterogeneous in different neuronal sub-compartments. Confocal microscopy on low density neuronal cultures transduced with lentivirus expressing mitochondrially-targeted green fluorescent protein showed that mitochondria residing in neuronal soma form a reticular network, whereas those residing in distal neurites exhibit a discrete elongated morphology (Figure 1 A-B). Using the SBFSEM technique, the mitoch.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The complexity of the nervous system poses a significant challenge in reconstructing large tissue volumes and analyzing the morphology and distribution of organelles such as mitochondria with adequate resolution. Multiple cells including neurons, oligodendrocytes and astrocytes with numerous processes extended in three dimensions interact within the brain tissue 43. Since mitochondria resides both in the soma of cells and distant processes, mitochondrial morphology is extremely pleomorphic in the nervous syste.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

We thank Sidney Walker for providing technical help. This work was supported in part by a grant from the National Institute of Health (1R01EY024712-01A1).


Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
C57BL/6J mice Jackson laboratory  664
Isoflurane VETone, tradename Fluriso 501017
Dissection tray Fisher scientific  S65105 
Dissection scissors Ted Pella Inc. 1316
Butterfly canula Exel International 26704
Phosphate buffer saline Sigma-Aldrich P4417-100TAB
Filter (0.45 micron) EMD Millipore NC0813356
Dissection microscope Olympus SZ61
Vibratome sectioning system Ted Pella Inc. Vibratome 3000
Sodium Cacodylate EMS 12300
Tannic Acid EMS 21700
Potassium Ferrocyanide J.T. Baker 14459-95-1
Osmium Tetroxide 4% Solution EMS 19150
Thiocarbohydrazide EMS 21900
L-Aspartic Acid Sigma-Aldrich A93100
Potassium Hydroxide Acros Organics 43731000
Lead Nitrate EMS 17900
EMbed-812 EMBEDDING KIT EMS 14120 Contains Embed 812  resin, DDSA, NMA, and DMP-30.
Glutaraldehyde 25% EM Grade Polysciences Inc. 1909
Paraformaldehyde EMS 19202
Uranyl Acetate EMS 22400
Ethanol EMS 15055
Propylene Oxide EMS 20400
Embedding Mold EMS 70907
Aluminum specimen pin EMS 70446
Colloidal Silver Liquid EMS 12630
Razor EMS 72000
Super Glue (Loctite Gel Control) Loctite 234790 Hardware/craft stores carry this item
Conductive epoxy Ted Pella Inc. 16043
Scanning electron microscope Zeiss Sigma VP
In chamber ultramicrotome for SEM Gatan Inc. 3View2 Can be designed for other SEMs
Trimming microscope for pin preparation Gatan Inc. supplied as part of 3View system
Low kV backscattered electron detector Gatan Inc. 3V-BSED
ImageJ/ Fiji processing package  ImageJ ver 1.50b, FIJI download Oct 1, 2015

  1. Kasahara, A., Scorrano, L. Mitochondria: from cell death executioners to regulators of cell differentiation. Trends Cell Biol. 24, 761-770 (2014).
  2. Friedman, J. R., et al. ER tubules mark sites of mitochondrial division. Science. 334, 358-362 (2011).
  3. Bereiter-Hahn, J., Voth, M., Mai, S., Jendrach, M. Structural implications of mitochondrial dynamics. Biotechnol J. 3, 765-780 (2008).
  4. Campello, S., Scorrano, L. Mitochondrial shape changes: orchestrating cell pathophysiology. EMBO Rep. 11, 678-684 (2010).
  5. Trimmer, P. A., et al. Abnormal mitochondrial morphology in sporadic Parkinson's and Alzheimer's disease cybrid cell lines. Exp Neurol. 162, 37-50 (2000).
  6. Chen, H., Chan, D. C. Mitochondrial dynamics--fusion, fission, movement, and mitophagy--in neurodegenerative diseases. Hum Mol Genet. 18, 169-176 (2009).
  7. Li, Z., Okamoto, K., Hayashi, Y., Sheng, M. The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell. 119, 873-887 (2004).
  8. Romanello, V., et al. Mitochondrial fission and remodelling contributes to muscle atrophy. EMBO J. 29, 1774-1785 (2010).
  9. Szabadkai, G., et al. Drp-1-dependent division of the mitochondrial network blocks intraorganellar Ca2+ waves and protects against Ca2+-mediated apoptosis. Mol Cell. 16, 59-68 (2004).
  10. Yu, T., Robotham, J. L., Yoon, Y. Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc Natl Acad Sci U S A. 103, 2653-2658 (2006).
  11. Scheckhuber, C. Q., et al. Reducing mitochondrial fission results in increased life span and fitness of two fungal ageing models. Nat Cell Biol. 9, 99-105 (2007).
  12. Scheibye-Knudsen, M., Fang, E. F., Croteau, D. L., Wilson, D. M., 3rd, V. A., Bohr, Protecting the mitochondrial powerhouse. Trends Cell Biol. 25, 158-170 (2015).
  13. Macke, J. H., et al. Contour-propagation algorithms for semi-automated reconstruction of neural processes. J Neurosci Methods. 167, 349-357 (2008).
  14. Parikh, S. The neurologic manifestations of mitochondrial disease. Dev Disabil Res Rev. 16, 120-128 (2010).
  15. Frye, R. E., Rossignol, D. A. Mitochondrial dysfunction can connect the diverse medical symptoms associated with autism spectrum disorders. Pediatr Res. 69, 41-47 (2011).
  16. Beal, M. F. Mitochondrial dysfunction in neurodegenerative diseases. Biochim Biophys Acta. 1366, 211-223 (1998).
  17. DiMauro, S., Schon, E. A. Mitochondrial disorders in the nervous system. Annu Rev Neurosci. 31, 91-123 (2008).
  18. DiMauro, S., Schon, E. A. Mitochondrial respiratory-chain diseases. N Engl J Med. 348, 2656-2668 (2003).
  19. Calkins, M. J., Manczak, M., Mao, P., Shirendeb, U., Reddy, P. H. Impaired mitochondrial biogenesis, defective axonal transport of mitochondria, abnormal mitochondrial dynamics and synaptic degeneration in a mouse model of Alzheimer's disease. Hum Mol Genet. 20, 4515-4529 (2011).
  20. Anitha, A., et al. Downregulation of the expression of mitochondrial electron transport complex genes in autism brains. Brain Pathol. 23, 294-302 (2013).
  21. Misgeld, T., Kerschensteiner, M., Bareyre, F. M., Burgess, R. W., Lichtman, J. W. Imaging axonal transport of mitochondria in vivo. Nat Methods. 4, 559-561 (2007).
  22. Takihara, Y., et al. In vivo imaging of axonal transport of mitochondria in the diseased and aged mammalian CNS. Proc Natl Acad Sci U S A. 112, 10515-10520 (2015).
  23. Shepherd, G. M., Harris, K. M. Three-dimensional structure and composition of CA3→CA1 axons in rat hippocampal slices: implications for presynaptic connectivity and compartmentalization. J Neurosci. 18, 8300-8310 (1998).
  24. Wang, C., et al. Dynamic tubulation of mitochondria drives mitochondrial network formation. Cell Res. 25 (10), 1108-1120 (2015).
  25. Glancy, B., et al. Mitochondrial reticulum for cellular energy distribution in muscle. Nature. 523, 617-620 (2015).
  26. Chen, H., Chan, D. C. Mitochondrial dynamics in mammals. Curr Top Dev Biol. 59, 119-144 (2004).
  27. Chavan, V., et al. Central presynaptic terminals are enriched in ATP but the majority lack mitochondria. PLoS One. 10, e0125185 (2015).
  28. Peddie, C. J., Collinson, L. M. Exploring the third dimension: volume electron microscopy comes of age. Micron. 61, 9-19 (2014).
  29. Harris, K. M., et al. Uniform serial sectioning for transmission electron microscopy. J Neurosci. 26, 12101-12103 (2006).
  30. Hayworth, K. J., et al. Imaging ATUM ultrathin section libraries with WaferMapper: a multi-scale approach to EM reconstruction of neural circuits. Front Neural Circuits. 8, 68 (2014).
  31. Bushby, A. J., et al. Imaging three-dimensional tissue architectures by focused ion beam scanning electron microscopy. Nat Protoc. 6, 845-858 (2011).
  32. Denk, W., Horstmann, H. Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol. 2, e329 (2004).
  33. Leighton, S. B. SEM images of block faces, cut by a miniature microtome within the SEM - a technical note. Scan Electron Microsc. , 73-76 (1981).
  34. Briggman, K. L., Denk, W. Towards neural circuit reconstruction with volume electron microscopy techniques. Curr Opin Neurobiol. 16, 562-570 (2006).
  35. Shomorony, A., et al. Combining quantitative 2D and 3D image analysis in the serial block face SEM: application to secretory organelles of pancreatic islet cells. J Microsc. 259, 155-164 (2015).
  36. Pinali, C., Kitmitto, A. Serial block face scanning electron microscopy for the study of cardiac muscle ultrastructure at nanoscale resolutions. J Mol Cell Cardiol. 76, 1-11 (2014).
  37. Miyazaki, N., Esaki, M., Ogura, T., Murata, K. Serial block-face scanning electron microscopy for three-dimensional analysis of morphological changes in mitochondria regulated by Cdc48p/p97 ATPase. J Struct Biol. 187, 187-193 (2014).
  38. Traka, M., et al. WDR81 is necessary for purkinje and photoreceptor cell survival. J Neurosci. 33, 6834-6844 (2013).
  39. Ohno, N., et al. Mitochondrial immobilization mediated by syntaphilin facilitates survival of demyelinated axons. Proc Natl Acad Sci U S A. 111, 9953-9958 (2014).
  40. Deerinck, T. J., Bushong, E. A., Thor, A., Ellisman, M. H. . NCMIR methods for 3D EM: A new protocol for preparation of biological specimens for serial block face scanning electron microscopy. , (2010).
  41. Ohno, N., et al. Myelination and axonal electrical activity modulate the distribution and motility of mitochondria at CNS nodes of Ranvier. J Neurosci. 31, 7249-7258 (2011).
  42. Hammer, S., Monavarfeshani, A., Lemon, T., Su, J., Fox, M. A. Multiple Retinal Axons Converge onto Relay Cells in the Adult Mouse Thalamus. Cell Rep. 12, 1575-1583 (2015).
  43. Kasthuri, N., et al. Saturated Reconstruction of a Volume of Neocortex. Cell. 162, 648-661 (2015).
  44. Conchello, J. A., Lichtman, J. W. Optical sectioning microscopy. Nat Methods. 2, 920-931 (2005).
  45. Denk, W., Strickler, J. H., Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science. 248, 73-76 (1990).
  46. Bohorquez, D., Haque, F., Medicetty, S., Liddle, R. A. Correlative Confocal and 3D Electron Microscopy of a Specific Sensory Cell. J Vis Exp. , e52918 (2015).
  47. Fiala, J. C. Reconstruct: a free editor for serial section microscopy. J Microsc. 218, 52-61 (2005).
  48. Cardona, A., et al. TrakEM2 software for neural circuit reconstruction. PLoS One. 7, e38011 (2012).
  49. Helmstaedter, M., Mitra, P. P. Computational methods and challenges for large-scale circuit mapping. Curr Opin Neurobiol. 22, 162-169 (2012).
  50. Helmstaedter, M., Briggman, K. L., Denk, W. High-accuracy neurite reconstruction for high-throughput neuroanatomy. Nat Neurosci. 14, 1081-1088 (2011).
  51. Saalfeld, S., Cardona, A., Hartenstein, V., Tomancak, P. CATMAID: collaborative annotation toolkit for massive amounts of image data. Bioinformatics. 25, 1984-1986 (2009).
  52. Giuly, R. J., Martone, M. E., Ellisman, M. H. Method: automatic segmentation of mitochondria utilizing patch classification, contour pair classification, and automatically seeded level sets. BMC Bioinformatics. 13, 29 (2012).
  53. Jakobs, S., Wurm, C. A. Super-resolution microscopy of mitochondria. Curr Opin Chem Biol. 20, 9-15 (2014).

This article has been published

Video Coming Soon

JoVE Logo


Terms of Use





Copyright © 2024 MyJoVE Corporation. All rights reserved