JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Biochemistry

Patch Clamp Recordings on Intact Dorsal Root Ganglia from Adult Rats

Published: September 29th, 2016

DOI:

10.3791/54287

1Department of Oral and Maxillofacial Surgery, University of California, San Francisco, 2Department of Anatomy, University of California, San Francisco

This manuscript describes how to prepare intact dorsal root ganglia for patch clamp recordings. This preparation maintains the microenvironment for neurons and satellite glial cells, thus avoiding the phenotypic and functional changes seen using dissociated DRG neurons.

Patch clamp studies from dorsal root ganglia (DRGs) neurons have increased our understanding of the peripheral nervous system. Currently, the majority of recordings are conducted on dissociated DRG neurons, which is a standard preparation for most laboratories. Neuronal properties, however, can be altered by axonal injury resulting from enzyme digestion used in acquiring dissociated neurons. Further, dissociated neuron preparations cannot fully represent the microenvironment of the DRG since loss of contact with satellite glial cells that surround the primary sensory neurons is an unavoidable consequence of this method. To overcome the limitations in using conventional dissociated DRG neurons for patch clamp recordings, in this report we describe a method to prepare intact DRGs and conduct patch clamp recordings on individual primary sensory neurons ex vivo. This approach permits the fast and straightforward preparation of intact DRGs, mimicking in vivo conditions by keeping DRG neurons associated with their surrounding satellite glial cells and basement membrane. Furthermore, the method avoids axonal injury from manipulation and enzyme digestion such as when dissociating DRGs. This ex vivo preparation can additionally be used to study the interaction between primary sensory neurons and satellite glial cells.

Sensation is essential to an organism's survival and wellbeing. The transmission of stimuli is dependent on the sensory pathways starting at peripheral endings of axons from primary sensory neurons. Primary sensory neurons, with the exception of the mesencephalic nucleus of the trigeminal nerve, are located in the trigeminal ganglia and dorsal root ganglia (DRGs). They serve as gatekeepers of the sensory information 1. At the perikarial membrane, just as at the central and peripheral terminals, DRG neurons express receptors and ion channels, such as glutamate receptors, TNF alpha receptors, transient receptor potential cation channel subfamily V member ....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Ethics Statement: All procedures for the maintenance and use of the experimental animals conformed to the regulations of UCSF Committees on Animal Research and were carried out in accordance with the guidelines of the NIH regulations on animal use and care (Publication 85 - 23, Revised 1996). The UCSF Institutional Animal Care and Use Committee approved the protocols used in this study.

1. Preparation of Instruments, Solutions and Dishes

  1. Prepare Artificial Cerebrospinal Fluid (aCSF.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Figure 1 shows the process of preparing intact DRG for patch recording. Figure 1A shows the exposure and location of the ganglia after laminectomy. Figure1B shows L3, L4 and L5 DRGs with the nerve roots attached after removing the spinal cord. Then L4 and 5 DRGs are carefully dissected and freed from the vertebrae. Next, the epineurium, a transparent membrane surrounding the DRG, is removed (yellow arrow, Figure 1D). The .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

We report a method to prepare whole DRGs for patch clamp studies. There are several key elements for preparing an ideal specimen. Firstly, it is important to dissect the DRGs with dorsal roots attached. After that, the epineurium need to be carefully removed while avoiding damage to the neurons. Finally, to expose the neurons and their surrounding satellite glial cells, it is necessary to digest the remaining connective tissue. Intact DRGs from adult rats prepared with the method described here will maintain good viabili.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The authors would like to acknowledge the Painless Research Foundation for support of the work. This work was also supported by the NIH grants R01 NS080921-01 and R21 NS079897-01A1.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Pentobarbital sodium vortech Pharmaceuticals
syringe BD 309659 1 ml, 5 ml.
scalpel BD size: 15
Mayo straight scissor Fine Science Tools 14010-15
Mayo curved scissor Fine Science Tools 14011-15
Rongeur Fine Science Tools 16021-14
Adson toothed forceps Fine Science Tools 11027-12
Iris Scissor Fine Science Tools 14084-08
Noyes spring scissor Fine Science Tools 15124-12
Bone scissors Fine Science Tools 16044-10 Special for cutting the bones. 
Forceps: Dumont, Dumoxel Biologie #5 Fine Science Tools 11252-30 These have the fine tips that do not need sharpening when first purchased.
periosteal elevator Sklar 97-0530
Dissection microscope WILD
Transfer pipette Fisher brand 13-711-5AM
Petri dish (10 cm) Pyrex Glass petri dish can avoid damaging the tips of fine forceps
Collagenase (Liberase TM) Roche 05-401-119-001 dissolve at the concentration of 13 u/ml, aliquot into glass pipette. Avoid repeated freeze and thaw.
filter Thermo scientific 7232520 Filter the internal solutions for patch clamp recording to avoid clog.
Glass pipette Sutter BF150-110-7.5
Anchor Havard apparatus 64-0250 stabilize the DRG to avoid drift.
Peristaltic pump WPI
Pipette puller Sutter P97
Amplifier Molecular devices Axopatch 200B
Digitizer Molecular devices 1440D
Microscope NIKON FN600
Micro-manipulator Sutter MPC200
microinjection dispense system General Valve Picrospitzer II fast drug application system
Carbogen (95% O2, 5% CO2) Local Medical Gas supplier

  1. Basbaum, A. I., Bautista, D. M., Scherrer, G., Julius, D. Cellular and molecular mechanisms of pain. Cell. 139, 267-284 (2009).
  2. Caterina, M. J., et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 389, 816-824 (1997).
  3. Gong, K., Bhargava, A., Jasmin, L. GluN2B N-methyl-D-aspartate receptor and excitatory amino acid transporter 3 are upregulated in primary sensory neurons after 7 days of morphine administration in rats: implication for opiate-induced hyperalgesia. Pain. 157, 147-158 (2016).
  4. Gong, K., Kung, L. H., Magni, G., Bhargava, A., Jasmin, L. Increased response to glutamate in small diameter dorsal root ganglion neurons after sciatic nerve injury. PloS one. 9, 95491 (2014).
  5. Gong, K., Zou, X., Fuchs, P. N., Lin, Q. Minocycline inhibits neurogenic inflammation by blocking the effects of tumor necrosis factor-alpha. Clin Exp Pharmacol Physiol. , (2015).
  6. Ohtori, S., Takahashi, K., Moriya, H., Myers, R. R. TNF-alpha and TNF-alpha receptor type 1 upregulation in glia and neurons after peripheral nerve injury: studies in murine DRG and spinal cord. Spine. 29, 1082-1088 (2004).
  7. Waxman, S. G., Cummins, T. R., Dib-Hajj, S., Fjell, J., Black, J. A. Sodium channels, excitability of primary sensory neurons, and the molecular basis of pain. Muscle nerve. 22, 1177-1187 (1999).
  8. Zhang, J. M., Song, X. J., LaMotte, R. H. Enhanced excitability of sensory neurons in rats with cutaneous hyperalgesia produced by chronic compression of the dorsal root ganglion. J Neurophysiol. 82, 3359-3366 (1999).
  9. Dib-Hajj, S. D., et al. Plasticity of sodium channel expression in DRG neurons in the chronic constriction injury model of neuropathic pain. Pain. 83, 591-600 (1999).
  10. Cummins, T. R., et al. A novel persistent tetrodotoxin-resistant sodium current in SNS-null and wild-type small primary sensory neurons. J Neurosci. 19, RC43 (1999).
  11. Zheng, J. H., Walters, E. T., Song, X. J. Dissociation of dorsal root ganglion neurons induces hyperexcitability that is maintained by increased responsiveness to cAMP and cGMP. J Neurophysiol. 97, 15-25 (2007).
  12. Schoenen, J., Delree, P., Leprince, P., Moonen, G. Neurotransmitter phenotype plasticity in cultured dissociated adult rat dorsal root ganglia: an immunocytochemical study. J Neurosci Res. 22, 473-487 (1989).
  13. Hanani, M. Satellite glial cells: more than just 'rings around the neuron'. Neuron Glia Biol. 6, 1-2 (2010).
  14. Takeda, M., Nasu, M., Kanazawa, T., Shimazu, Y. Activation of GABA(B) receptors potentiates inward rectifying potassium currents in satellite glial cells from rat trigeminal ganglia: in vivo patch-clamp analysis. Neuroscience. 288, 51-58 (2015).
  15. Zhang, H., et al. Altered functional properties of satellite glial cells in compressed spinal ganglia. Glia. 57, 1588-1599 (2009).
  16. Fan, N., Donnelly, D. F., LaMotte, R. H. Chronic compression of mouse dorsal root ganglion alters voltage-gated sodium and potassium currents in medium-sized dorsal root ganglion neurons. J Neurophysiol. 106, 3067-3072 (2011).
  17. Fan, N., Sikand, P., Donnelly, D. F., Ma, C., Lamotte, R. H. Increased Na+ and K+ currents in small mouse dorsal root ganglion neurons after ganglion compression. J Neurophysiol. 106, 211-218 (2011).
  18. Sherman-Gold, R. . The Axon Guide. , (2008).
  19. Cummins, T. R., Rush, A. M., Estacion, M., Dib-Hajj, S. D., Waxman, S. G. Voltage-clamp and current-clamp recordings from mammalian DRG neurons. Nat Protoc. 4, 1103-1112 (2009).
  20. Zhang, J. M., Donnelly, D. F., LaMotte, R. H. Patch clamp recording from the intact dorsal root ganglion. J Neurosci Methods. 79, 97-103 (1998).
  21. Benn, S. C., Costigan, M., Tate, S., Fitzgerald, M., Woolf, C. J. Developmental expression of the TTX-resistant voltage-gated sodium channels Nav1.8 (SNS) and Nav1.9 (SNS2) in primary sensory neurons. J Neurosci. 21, 6077-6085 (2001).
  22. Funakoshi, K., et al. Differential development of TRPV1-expressing sensory nerves in peripheral organs. Cell Tissue Res. 323, 27-41 (2006).
  23. Hayar, A., Gu, C., Al-Chaer, E. D. An improved method for patch clamp recording and calcium imaging of neurons in the intact dorsal root ganglion in rats. J Neurosci Methods. 173, 74-82 (2008).
  24. Yagi, J., Sumino, R. Inhibition of a hyperpolarization-activated current by clonidine in rat dorsal root ganglion neurons. J Neurophysiol. 80, 1094-1104 (1998).
  25. Ma, C., Donnelly, D. F., LaMotte, R. H. In vivo visualization and functional characterization of primary somatic neurons. J Neurosci Methods. 191, 60-65 (2010).
  26. Vit, J. P., Jasmin, L., Bhargava, A., Ohara, P. T. Satellite glial cells in the trigeminal ganglion as a determinant of orofacial neuropathic pain. Neuron Glia Biol. 2, 247-257 (2006).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved