JoVE Logo
Faculty Resource Center

Sign In





Representative Results






Surgical Approach for Middle Cerebral Artery Occlusion and Reperfusion Induced Stroke in Mice

Published: October 20th, 2016



1Department of Molecular & Cellular Physiology, Health Sciences Center Shreveport, Louisiana State University

In order to understand the pathophysiology of stroke, it is important to use reliable models. This paper will describe one of the most frequently used stroke models in mice, termed the middle cerebral artery occlusion (MCAo) model (also termed the intraluminal filament or suture model) with reperfusion.

Stroke is a leading cause of death worldwide and continues to be one of the major causes of long-term adult disabilities. About 87% of strokes are ischemic in origin and occur in the territory of the middle cerebral artery (MCA). Currently the only Food and Drug Administration (FDA) approved drug for the treatment of this devastating disease is tissue plasminogen activator (tPA). However, tPA has a small therapeutic window for administration (3 - 6 hr), and is only effective in 4% of the patients who actually receive it. Current research focuses on understanding the pathophysiology of stroke in order to find potential therapeutic targets. Thus, reliable models are crucial, and the MCA occlusion (MCAo) model (also termed the intraluminal filament or suture model) is deemed to be the most clinically relevant surgical model of ischemic stroke, and is fairly non-invasive and easily reproducible. Typically the MCAo model is used with rodents, especially with mice due to all the genetic variations available for this species. Here we describe (and present in the video) how to successfully perform the MCAo model (with reperfusion) in mice to generate reliable and reproducible data.

Stroke is the fifth leading cause of death worldwide, with one person dying from the disease every 4 minutes. Over 800,000 Americans suffer a stroke every year, which is not only devastating for the patient, but also for their families. Stroke is the main cause of adult disability and the annual expenditure is estimated to be in the order of $ 36.5 billion1 despite very few treatment options being available.

Tissue plasminogen activator (tPA) is the only Food and Drug Administration (FDA) licensed drug for ischemic stroke. However, it is only effective if administered to patients within 3-6 hours from the onset of the stroke, and....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This protocol and the experiments reported in the video were approved by the LSUHSC-S Institutional Animal Care and Use Committee and are in compliance with the guidelines of NIH.

NOTE: Male C57BL/6 mice weighing 25 - 29 g were used in this study. The mice were maintained on a standard chow pellet diet with free access to water, under a 12 hr light/dark cycle in individually ventilated cages. The procedure will be performed under sterile conditions using sterile techniques (e.g., sterile gloves, sterile instruments).

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Mice underwent 30-min MCAo-induced brain ischemia (Figure 1) followed by a period of reperfusion (24 hr and 1 wk are presented here, but the length of reperfusion can be varied). The mortality during MCAo was minimal (approximately 2%). Post ischemia, the mortality rate (within the first 24 hr) was around 26%.

Laser Doppler flowmetry was used to confirm blood flow perfusion in the MCA territory before and after .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Since its conception 20 years ago, the MCAo model for human stroke involving insertion of a filament has been used in a huge number of studies. This is mainly due to the fact that it mimics what happens clinically in the most common form of stroke (i.e., ischemic stroke). The striatum is more sensitive to ischemia than the cerebral cortex, and as such, the length of ischemic time will translate into whether both the striatum and the dorsolateral cortex will be affected, or just the striatum. Both infarct and rep.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This work was funded by the National Institute of Health, the National Heart Lung and Blood Institute (NIH and NHLBI; HL125572-01A1) and the LSUHSC-S start up fund to F.N.E. Gavins.


Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Male C57BL/6 mice Jackson Laboratory, Bar Harbor, ME #000664
Ketamine Hydrochloride Morris & Dickson, Shreveport, LA 67457-108-10
Xylazine Akorn, Inc, Lake Forest, IL NADA# 139-236
DC temperature control system FHC, Bowdoin, ME 40-90-8D
Mini rectal thermistor probe FHC, Bowdoin, ME 40-80-5D-02
Heating pad FHC, Bowdoin, ME 40-90-2-06
Clippers Amazon, Bellevue, WA #64800
70% ethanol Worldwide Medical Products, Bristol, PA #51011023
Dissecting microscope Olympus, Center Valley, PA SZ40
Iris scissors (straight) Fine Science Tools, Foster City, CA 11251-20
Dumont forceps (45° bent tip) Fine Science Tools, Foster City, CA 11297-00
Micro vessel clip Fine Science Tools, Foster City, CA 18055-05
Micro dissecting spring scissors (straight) Fine Science Tools, Foster City, CA 14088-10
Retractors (blunt) Fine Science Tools, Foster City, CA 18200-11 (Helen used 17022-13)
Cotton tipped applicators Fisher Scientific, Waltham, MA 23-400-100
Gauze sponges Covidien, Mansfield, MA #9023
6-0 silk braided surgical suture Roboz, Gaithersburg, MD SUT-1073-11
0.9% sodium chloride Morris & Dickson, Lake Forest, IL 0409-4888-20
6-0 medium MCAO suture (silicon rubber coated monofilament) Doccol Corporation, Sharon, MA 6023PKRe
Sofsilk 6-0 silicone coated braided silk Covidien, Mansfield, MA SUT-14-1
Carprofen Pfizer, New York, NY NADA# 141-199
Puralube Dechra, Norwich, UK NDC 17033-211-38
Physitemp temperature controller Harvard Apparatus, Holliston, MA TCAT-2AC
Heat lamp Harvard Apparatus, Holliston, MA HL-1
Laser doppler probe AD Instruments, Colorado Springs, CO MSP100XP
24-well plates Fisher Scientific, Waltham, MA #353226
Phosphate buffered saline (PBS) Life Technologies, Carlsbad, CA 20012-050
Single edge razor blades Fisher Scientific, Waltham, MA 12-640
2,3,5-triphenyltetrazalium chloride (TTC) Sigma Aldrich, St. Louis, MO T8877-50G
Mouse brain matrix slicer Braintree Scientific, Braintree, MA BS-A 5000C
Water bath VWR, Radnor, PA #182
10% formalin Sigma Aldrich, St. Louis, MO HT501128-4L
Image J analysis software NIH, Bethesda, MD free download
Retractor Medical Device Purchase, Newcastle, CA MP-740

  1. Go, A. S., et al. Heart disease and stroke statistics-2014 update: a report from the American Heart Association. Circulation. 129 (3), e28-e292 (2014).
  2. Marks, M. P., et al. Patients with acute stroke trated with intravenous tPS 3-6 hours after stroke onset: correlations between MR angiography findings and perfusion- and diffusion-weighted imaging in the DEFUSE study. Radiology. 249 (2), 614-623 (2008).
  3. Longa, E. Z., Weinstein, P. R., Carlson, S., Cummins, R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 20 (1), 84-91 (1989).
  4. Koizumi, J., Yoshida, Y., Nakazawa, T., Ooneda, G. Experimental studies of ischemic brain edema, I: a new experimnetal model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area. Jpn J Stroke. (8), 1-8 (1986).
  5. Smith, H. K., Russell, J. M., Granger, D. N., Gavins, F. N. E. Critical differences between two classical surgical approaches for middle cerebral artery occlusion-induced stroke in mice. J Neurosci Meth. 249, 99-105 (2015).
  6. Gavins, F. N., Dalli, J., Flower, R. J., Granger, D. N., Perretti, M. Activation of the annexin 1 counter-regulatory circuit affords protection in the mouse brain microcirculation. FASEB J. 21 (8), 1751-1758 (2007).
  7. Chen, J., et al. Atorvastain induction of VEGF and BDNF promotes brain plasticity after stroke in mice. J Cereb Blood Flow Metab. 25 (2), 281-290 (2005).
  8. Li, Y., et al. Intrastriatal transplantation of bone marrow nonhematopoietic cells improves functional recovery after stroke in adult mice. J Cereb Blood Flow Metab. 20 (9), 1311-1319 (2000).
  9. Liesz, A., et al. The spectrum of systemic immune alterations after murine focal ischemia; the immunodepression versus immunomodulation. Stroke. 40 (8), 2849-2858 (2009).
  10. Beckmann, N. High resolution magnetic resonance angiography non-invasively reveals mouse strain differences in the cerebrovascular anatomy in vivo. Magn Reson Med. 44 (2), 252-258 (2000).
  11. Barone, F. C., Knudsen, D. J., Nelson, A. H., Feuerstein, G. Z., Willette, R. N. Mouse strain differences in susceptibility to cerebral ischemia are related to cerebral vascular anatomy. J Cereb Blood Flow Metab. 13 (4), 683-692 (1993).
  12. Burk, J., Burggraf, D., Vosko, M., Dichgans, M., Hamann, G. F. Protection of cerebral microvasculature after moderate hypothermia following experimental focal cerebral ischemia in mice. Brain Res. (1226), 248-255 (2008).
  13. Noor, R., Wang, C. X., Shuaib, A. Effects of hyperthemia on infarct volume in focal embolic model of cerebral ischemia in rats. Neurosci Lett. 349 (2), 130-132 (2003).
  14. Shin, H. K., et al. Mild induced hypertension improves blood flow and oxygen metabolism in transient focal cerebral ischemia. Stroke. 39 (5), 1548-1555 (2008).
  15. Richter, S. H., Garner, J. P., Würbel, H. Environmental standardization: cure or cause of poor reproducibility in animal experiments?. Nat Methods. 6 (4), 257-261 (2009).
  16. Holloway, P. M., et al. Both MC1 and MC3 receptors provide protection from cerebral ischemia-reperfusion-induced neutrophil recruitment. Arterioscler Thromb Vasc Biol. 35, (2015).
  17. Vandeputte, C., et al. Characterization of the inflammatory response in a photothrombotic stroke model by MRI: implications for stem cell transplantation. Mol Imaging Biol. 13 (4), 663-671 (2010).
  18. Iwae, Y., et al. Glial cell-mediated deterioration and repair of the nervous system after traumatic brain injury in a rat model as assessed by positron emission tomography. J Neurotrauma. 27 (8), 1463-1475 (2010).
  19. Morris, R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods. 11 (1), 47-60 (1984).
  20. Mouzon, B., et al. Repetitive mild traumatic brain injury in a mouse model produces learning and memory deficits accompanied by histological changes. J Neurotrauma. 29 (18), 2761-2773 (2012).
  21. Fleming, S., et al. Early and progressive sensorimotor anomalies in mice overexpressing wild-type human α-synuclein. J Neurosci. 24 (42), 9434-9440 (2004).
  22. Sedelis, M., Schwarting, R. K. W., Huston, J. P. Behavioral phenotyping of the MPTP mouse model of Parkinson's disease. Behav Brain Res. 125 (1-2), 109-125 (2001).
  23. Toon, L., Silva, M., D'Hooge, R., Aerts, J. M., Berckmans, D. Automated gait analysis in the open-field test for laboratory mice. Behav Res Methods. 41 (1), 148-153 (2009).
  24. Lubjuhn, J., et al. Functional testing in a mouse stroke model induced by occlusion of the distal middle cerebral artery. J Neurosci Methods. 184 (1), 95-103 (2009).
  25. Bouët, V., Freret, T., Toutain, J., Divoux, D., Boulouard, M., Schumann-Bard, P. Sensorimotor and cognitive deficits after transient middle cerebral artery occlusion in the mouse. Exp Neurol. 203 (2), 555-567 (2007).
  26. Freret, T., et al. Behavioral deficits after distal focal cerebral ischemia in mice: usefulness of adhesive removal test. Behav Neurosci. 123 (1), 224-230 (2009).
  27. Zhan, Y., et al. Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nature Neurosci. 17, 400-406 (2013).
  28. Balkaya, M., Kröber, J. M., Rex, A., Endres, M. Assessing post-stroke behavior in mouse models of focal ischemia. J Cereb Blood Flow. 33, 330-338 (2012).
  29. Wiessner, C., et al. Anti-nogo-a antibody infusion 24 hours after experimental stroke imporved behavioral outcome and corticospinal plasticity in normotensive and spontaneously hypertensive rats. J Cereb Blood Flow Metab. 23, 154-165 (2003).
  30. Schaar, K. L., Brenneman, M. M., Savitz, S. I. Functional assessments in the rodent stroke model. Exp Transl Stroke Med. 2 (13), (2010).

This article has been published

Video Coming Soon

JoVE Logo


Terms of Use





Copyright © 2024 MyJoVE Corporation. All rights reserved