JoVE Logo
Faculty Resource Center

Sign In





Representative Results






Sulfate Separation by Selective Crystallization with a Bis-iminoguanidinium Ligand

Published: September 8th, 2016



1Chemical Sciences Division, Oak Ridge National Laboratory, 2Department of Chemistry, The University of Texas at Austin, 3Department of Chemistry, The University of Tennessee

A protocol for in situ aqueous synthesis of a bis(iminoguanidinium) ligand and its utilization in selective separation of sulfate is presented.

A simple and effective method for selective sulfate separation from aqueous solutions by crystallization with a bis-guanidinium ligand, 1,4-benzene-bis(iminoguanidinium) (BBIG), is demonstrated. The ligand is synthesized as the chloride salt (BBIG-Cl) by in situ imine condensation of terephthalaldehyde with aminoguanidinium chloride in water, followed by crystallization as the sulfate salt (BBIG-SO4). Alternatively, BBIG-Cl is synthesized ex situ in larger scale from ethanol. The sulfate separation ability of the BBIG ligand is demonstrated by selective and quantitative crystallization of sulfate from seawater. The ligand can be recycled by neutralization of BBIG-SO4 with aqueous NaOH and crystallization of the neutral bis-iminoguanidine, which can be converted back into BBIG-Cl with aqueous HCl and reused in another separation cycle. Finally, 35S-labeled sulfate and β liquid scintillation counting are employed for monitoring the sulfate concentration in solution. Overall, this protocol will instruct the user in the necessary skills to synthesize a ligand, employ it in the selective crystallization of sulfate from aqueous solutions, and quantify the separation efficiency.

Selective separation of hydrophilic oxoanions (e.g., sulfate, chromate, phosphate) from competitive aqueous solutions represents a fundamental challenge with relevance to environmental remediation, energy production, and human health.1,2 Sulfate in particular is difficult to extract from water due to its intrinsic reluctance to shed its hydration sphere and migrate into less polar environments.3 Making aqueous sulfate extraction more efficient typically requires complex receptors that are difficult and tedious to synthesize and purify, often involving toxic reagents and solvents.4,5

Selective crysta....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Synthesis of 1,4-Benzene-bis(iminoguanidinium) Chloride (BBIG-Cl)

  1. In Situ Synthesis of the 1,4-Benzene-bis(iminoguanidinium) Chloride Ligand (BBIG-Cl) and Its Crystallization with Sulfate
    1. Add 0.067 g of terephthalaldehyde and 2.2 ml of a 0.5 M aqueous solution of aminoguanidinium chloride to 10 ml of deionized water in a 25 ml round bottom flask equipped with a magnetic stir bar.
    2. Stir the solution magnetically for four hours at 20 °C. This will yield a slightly yellow s.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The powder X-ray diffraction pattern of BBIG-SO4 (Figure 1) allows for unambiguous confirmation of the identity of the crystallized solid. In comparing the obtained pattern versus the reference one, peak intensity matters less than peak positioning. All strong peaks shown in the reference should be present in the obtained sample. The appearance of strong peaks in the sample that are absent in the reference pattern indicates the presence of impurities.

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This technique is rather tolerant to many deviations from the written procedure, which makes it quite robust. There are however two critical steps that must be followed. First, the BBIG-Cl ligand needs to be as pure as possible. Impurities will not only affect the crystallization and the solubility of the resulting sulfate salt, but will also make it difficult to calculate the amount required for quantitative sulfate removal from solution. Second, all steps in the β liquid scintillation counting section need to be f.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division. We thank the University of North Carolina Wilmington for providing the seawater.


Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Terephthalaldehyde Sigma T2207
Aminoguanidinium Chloride Sigma #396494
Sodium Sulfate Sigma #239313
Barium Chloride Sigma #342920 Highly Toxic
Ethanol Any Reagent Grade (190 proof)
Sodium Hydroxide EMD SX0590-1
Hydrochloric Acid Sigma #258148
Filter Paper Any - Any qualitative or analytical filter paper will work
Syringe Filter (0.22 um) Any - Nylon filter
35S Labeled Sulfate Perkin Elmer NEX041005MC
Ultima Gold Scintillation Cocktail Perkin Elmer #6013329
Polypropylene Vials  Any -
Disposable Syringe (2-3 mL) Any - Any disposable plastic syringe works

  1. Langton, M. L., Serpell, C. J., Beer, P. D. Anion Recognition in Water: Recent Advances from Supramolecular and Macromolecular Perspective. Angew. Chem. Int. Ed. 55, 1974-1987 (2016).
  2. Busschaert, N., Caltagirone, C., Van Rossom, W., Gale, P. A. Applications of Supramolecular Anion Recognition. Chem. Rev. 115, 8038-8155 (2015).
  3. Moyer, B. A., Custelcean, R., Hay, B. P., Sessler, J. L., Bowman-James, K., Day, V. W., Sung-Ok, K. A Case for Molecular Recognition in Nuclear Separations: Sulfate Separation from Nuclear Wastes. Inorg. Chem. 52, 3473-3490 (2013).
  4. Kim, S. K., Lee, J., Williams, N. J., Lynch, V. M., Hay, B. P., Moyer, B. A., Sessler, J. L. Bipyrrole-Strapped Calix[4]pyrroles: Strong Anion Receptors That Extract the Sulfate Anion. J. Am. Chem. Soc. 136, 15079-15085 (2014).
  5. Jia, C., Wu, B., Li, S., Huang, X., Zhao, Q., Li, Q., Yang, X. Highly Efficient Extraction of Sulfate Ions with a Tripodal Hexaurea Receptor. Angew. Chem. Int. Ed. 50, 486-490 (2011).
  6. Rajbanshi, A., Moyer, B. A., Custelcean, R. Sulfate Separation from Aqueous Alkaline Solutions by Selective Crystallization of Alkali Metal Coordination Capsules. Cryst. Growth Des. 11, 2702-2706 (2011).
  7. Custelcean, R. Urea-Functionalized Crystalline Capsules for Recognition and Separation of Tetrahedral Oxoanions. Chem. Commun. 49, 2173-2182 (2013).
  8. Custelcean, R., Sloop, F. V., Rajbanshi, A., Wan, S., Moyer, B. A. Sodium Sulfate Separation from Aqueous Alkaline Solutions via Crystalline Urea-Functionalized Capsules: Thermodynamics and Kinetics of Crystallization. Cryst. Growth Des. 15, 517-522 (2015).
  9. Custelcean, R., Williams, N. J., Seipp, C. A. Aqueous Sulfate Separation by Crystallization of Sulfate-Water Clusters. Angew. Chem. Int. Ed. 54, 10525-10529 (2015).
  10. Custelcean, R., Williams, N. J., Seipp, C. A., Ivanov, A. S., Bryantsev, V. S. Aqueous Sulfate Separation by Sequestration of [(SO4)(H2O)4]4- Clusters within Highly Insoluble Imine-Linked Bis-Guanidinium Crystals. Chem. Eur. J. 22, 1997-2003 (2016).
  11. Khownium, K., Wood, S. J., Miller, K. A., Balakrishna, R., Nguyen, T. B., Kimbrell, M. R., Georg, G. I., David, S. A. Novel Endotoxin-Sequestering Compounds with Terephthaldehyde-bis-guanylhydrazone Scaffolds. Bioorg. Med. Chem. Lett. 16, 1305-1308 (2006).
  12. Pecharsky, V. K., Zavalij, P. Y. . Fundamentals of Powder Diffraction and Structural Characterization of Materials. , (2005).
  13. Goldenberg, D. P. . Principles of NMR Spectroscopy: An Illustrated Guide. , (2016).

This article has been published

Video Coming Soon

JoVE Logo


Terms of Use





Copyright © 2024 MyJoVE Corporation. All rights reserved