JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Biology

Working with Auditory HEI-OC1 Cells

Published: September 3rd, 2016

DOI:

10.3791/54425

1Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles

House Ear Institute-Organ of Corti 1 (HEI-OC1) is one of the few mouse auditory cell lines currently available for research purposes. This protocol describes how to work with HEI-OC1 cells to investigate the cytotoxic effects of pharmacological drugs as well as functional properties of inner ear proteins.

HEI-OC1 is one of the few mouse auditory cell lines available for research purposes. Originally proposed as an in vitro system for screening of ototoxic drugs, these cells have been used to investigate drug-activated apoptotic pathways, autophagy, senescence, mechanism of cell protection, inflammatory responses, cell differentiation, genetic and epigenetic effects of pharmacological drugs, effects of hypoxia, oxidative and endoplasmic reticulum stress, and expression of molecular channels and receptors. Among other several important markers of cochlear hair cells, HEI-OC1 cells endogenously express prestin, the paradigmatic motor protein of outer hair cells. Thus, they can be very useful to elucidate novel functional aspects of this important auditory protein. HEI-OC1 cells are very robust, and their culture usually does not present big complications. However, they require some special conditions such as avoiding the use of common anti-bacterial cocktails containing streptomycin or other antibiotics as well as incubation at 33 °C to stimulate cell proliferation and incubation at 39 °C to trigger cell differentiation. Here, we describe how to culture HEI-OC1 cells and how to use them in some typical assays, such as cell proliferation, viability, death, autophagy and senescence, as well as how to perform patch-clamp and non-linear capacitance measurements.

House Ear Institute-Organ of Corti 1 (HEI-OC1) cells are derived from the auditory organ of a transgenic mouse 1,2. Incubation of any cell from this transgenic mouse at 33 °C/10% CO2 (permissive conditions) induces expression of an immortalizing gene that triggers de-differentiation and accelerated proliferation; moving the cells to 39 °C/5% CO2 (non-permissive conditions) lead to decreased proliferation, differentiation and, at least in the case of HEI-OC1, cell death 2,3.

HEI-OC1 cells were cloned and characterized in our laboratory over a decade ago, and initial studies indicated that....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Cell Culture

Note: All cell culturing protocols must be performed using proper cell culture techniques (for reference see the first 3 Chapters of Cell Biology: A Laboratory Handbook, Volume I 10). HEI-OC1 cells do not require any additional coating or treatment of the cell culture dishes for proper adherence and growth. Very important: do not use glassware dishes for cell culture purposes; the phenotype and biological response of the cells to pharmacological drugs will change (G Ka.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

In a couple of recent publications we reported a comprehensive set of studies aimed at evaluating the response of HEI-OC1 cells to several commonly used pharmacological drugs as well as investigating prestin function 8,9. In these studies we made use of all the protocols described in the previous sections.

One of the results of these previous studies was that HEI-OC1 cells cultured at non-permissive conditions (39 .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

In this report we describe how to culture HEI-OC1 cells and use them to evaluate mechanisms of drug-induced cytotoxicity and to investigate functional properties of prestin, the molecular motor of cochlear OHCs. The technical procedures, however, are general enough to be easily adapted to different studies.

All the protocols described here require the correct use of well-established cell culture techniques 10. Just like with any other cell line, working with HEI-OC1 cells requires a.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This work was supported by NIH Grants R01-DC010146 and R01-DC010397. Its content is solely the responsibility of the authors and does not necessarily represent the official view of the National Institutes of Health.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
HEI-OC1 cells ALL THE ASSAY KITS, EQUIPMENTS 
Class II Biological Safety cabinet The Baker Company Sterilgard III AND COMPANIES INDICATED IN THE
Refrigerated centrifuge Eppendorf 5810R PREVIOUS 2 COLUMNS ARE ONLY
Inverted microscope Zeiss Axiovert 25 EXAMPLES, AND ANY OTHER SIMILAR
Waterbath Stovall HWB115 PRODUCT COULD BE USED.
Cell counter Nexcelom Cellometer Auto T4
Two (2) Cell incubators, one at 33°C/10% CO2 and other at 39°C/5% CO2 Forma Scientific 3110
Cell culture dishes, PS, 100 x 20 mm with vents Greinier Bio-One 664-160
Cell culture dishes , PS,  60 x 15 mm with vents  Greiner Bio-One 628160
Cellstar tissue culture flasks  250 mL Greiner Bio-One 658-175
Cellstar tissue cultur  flasks 550 mL Greiner Bio-One 660-175
 6 well cell culture plate, with lid-Cellstar Greiner Bio-One 657-160
Microtest Tissue culture plate, 96 well,flat bottom with lid Becton Dickinson 353072
Micro-Assay-Plate, Chimmey, 96-well white,clear botton Greiner Bio-One 655098
50 ml Polypropylene conical tube with cap Cellstars Becton Dickinson  352070
15 ml Polypropylene conical tubes with cap-Cellstars Greiner Bio-One 188-271
PBS pH 7.4 (1X)  Life Technologies 10010-023
Dulbecco’s Modified Eagle’s Medium (DMEM) Life Technologies 11965-084
Fetal bovine serum (FBS)  Hyclone SH10073.1
Leibovitz's L-15 Medium, no phenol red Gibco/Invitrogen 21083-027
Trypsin, 0.25%  Life Technologies 25200-056
TACS MTT Cell Proliferation Assay Kit Trevigen 4890-25-K
Caspase-Glo 3/7 Assay  kit Promega   G8091 
BrdU Cell Proliferation Assay Kit  Cell Signaling 6813
Non-enzymatic cell dissociation solution  Sigma-Aldrich C5789
Cell-Tox Green Cytotoxicity Assay Kit Promega   G8741 
FACSAriaIII instrument  BD Biosciences  FACSAriaIII With 488 nm excitation (blue laser)
Digital Blot Scanner LI-COR C-DiGit
Electrophoresis and Blotting Unit Hoefer SE300 miniVE
Spectra Max 5 Plate Reader with Soft Max Pro 5.2 Software Molecular Devices SpectraMax 5
Patch-clamp amplifier HEKA EPC-10
Puller for preparing patch electrodes Sutter Instruments P-97

  1. Jat, P. S., et al. Direct derivation of conditionally immortall cell lines from an H-2Kb-tsA58 transgenic mouse. Proc. Natl. Acad. Sci. 88, 5096-5100 (1991).
  2. Kalinec, G. M., Webster, P., Lim, D. J., Kalinec, F. A cochlear cell line as an in vitro system for drug ototoxicity screening. Audiol. Neurootol. 8, 177-189 (2003).
  3. Devarajan, P., et al. Cisplatin-induced apoptosis in auditory cells: role of death receptor and mitochondrial pathways. Hear Res. 174, 45-54 (2002).
  4. Chen, F. Q., Hill, K., Guan, Y. J., Schacht, J., Sha, S. H. Activation of apoptotic pathways in the absence of cell death in an inner-ear immortomouse cell line. Hear Res. 284, 33-41 (2012).
  5. Hayashi, K., et al. The autophagy pathway maintained signaling crosstalk with the Keap1-Nrf2 system through p62 in auditory cells under oxidative stress. Cell Signal. 27, 382-393 (2015).
  6. Tsuchihashi, N. A., et al. Autophagy through 4EBP1 and AMPK regulates oxidative stress-induced premature senescence in auditory cells. Oncotarget. 6, 3644-3655 (2015).
  7. Youn, C. K., Kim, J., Park, J. H., Do, N. Y., Cho, S. I. Role of autophagy in cisplatin-induced ototoxicity. Int J Pediatr Otorhinolaryngol. 79, 1814-1819 (2015).
  8. Kalinec, G., Thein, P., Park, C., Kalinec, F. HEI-OC1 cells as a model for investigating drug cytotoxicity. Hear Res. 335, 105-117 (2016).
  9. Park, C., Thein, P., Kalinec, G., Kalinec, F. HEI-OC1 cells as a model for investigating prestin function. Hear Res. 335, 9-17 (2016).
  10. Celis, J. E. . Cell Biology: A Laboratory Handbook. 1, (2006).
  11. Bertolaso, L., et al. Apoptosis in the OC-k3 immortalized cell line treated with different agents. Audiology. 40, 327-335 (2001).
  12. Kalinec, F., Kalinec, G., Boukhvalova, M., Kachar, B. Establishment and characterization of conditionally immortalized organ of corti cell lines. Cell Biol Int. 23, 175-184 (1999).
  13. Belyantseva, I., Kalinec, G. M., Kalinec, F., Kachar, B. In vitro differentiation of two immortalized cell lines derived from the stria vascularis of a transgenic mouse. 21st Midwinter Meeting Association for Research in Otolaryngology. 620a, (1998).
  14. Gratton, M. A., Meehan, D. T., Smyth, B. J., Cosgrove, D. Strial marginal cells play a role in basement membrane homeostasis: in vitro and in vivo evidence. Hear Res. 163, 27-36 (2002).
  15. Debacq-Chainiaux, F., Erusalimsky, J. D., Campisi, J., Toussaint, O. Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc. 4, 1798-1806 (2009).
  16. Santos-Sacchi, J. Reversible inhibition of voltage-dependent outer hair cell motility and capacitance. J. Neurosci. 11, 3096-3110 (1991).
  17. Fink, S. L., Cookson, B. T. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun. 73, 1907-1916 (2005).
  18. Majno, G., Joris, I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol. 146, 3-15 (1995).
  19. Vanden Berghe, T., Linkermann, A., Jouan-Lanhouet, S., Walczak, H., Vandenabeele, P. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol. 15, 135-147 (2014).
  20. Sun, L., Wang, X. A new kind of cell suicide: mechanisms and functions of programmed necrosis. Trends Biochem Sci. 39, 587-593 (2014).
  21. Chan, F. K., Luz, N. F., Moriwaki, K. Programmed necrosis in the cross talk of cell death and inflammation. Annu Rev Immunol. 33, 79-106 (2015).
  22. Vercammen, D., et al. Dual signaling of the Fas receptor: initiation of both apoptotic and necrotic cell death pathways. J Exp Med. 188, 919-930 (1998).
  23. Campisi, J. Aging, cellular senescence, and cancer. Annu Rev Physiol. 75, 685-705 (2013).
  24. Bian, S., Koo, B. W., Kelleher, S., Santos-Sacchi, J., Navaratnam, D. S. A highly expressing Tet-inducible cell line recapitulates in situ developmental changes in prestin's Boltzmann characteristics and reveals early maturational events. Am J Physiol Cell Physiol. 299, C828-C835 (2010).
  25. Abe, T., et al. Developmental expression of the outer hair cell motor prestin in the mouse. J Membr Biol. 215, 49-56 (2007).
  26. Oliver, D., Fakler, B. Expression density and functional characteristics of the outer hair cell motor protein are regulated during postnatal development in rat. J Physiol. 519 Pt 3, 791-800 (1999).
  27. Tsunoo, M., Perlman, H. B. Cochlear Oxygen Tension: Relation to Blood Flow and Function. Acta Otolaryngol. 59, 437-450 (1965).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved