JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Immunology and Infection

Urinary Tract Infection in a Small Animal Model: Transurethral Catheterization of Male and Female Mice

Published: December 1st, 2017

DOI:

10.3791/54432

1Unité d’Immunobiologie des Cellules Dendritiques, Department of Immunology, Institut Pasteur, INSERM U818, 2Genentech

The established model of transurethral catheterization of mice allows the study of bladder pathologies, including urinary tract infection, but can only be performed in females. A new model of male transurethral instillation, presented here, will enable research in an area marked by strong clinical and epidemiological differences between the sexes.

Urinary tract infections (UTI) are extremely common worldwide, incurring significant morbidity and healthcare-associated expenses. Small animal models, which accurately reflect disease establishment and progression, permit dissection of host-pathogen interactions and generation of immunity to infection. In mice, intravesical instillation of uropathogenic E. coli, the causative agent in more than 85% of community acquired UTI, recapitulates many of the stages of infection observed in humans. Until recently, however, UTI could only be modeled in female animals. This limitation has hindered the study of sex-related differences in UTI, as well as other bladder pathologies, such as cancer. Here, we describe a method to instill male mice that allows direct comparison between female and male animals and provide a detailed protocol to assess bladder tissue by flow cytometry as a means to better understand host responses to infection. Together, these approaches will aid in the identification of host factors that contribute to sex biases observed in UTI and other bladder-associated diseases.

Urinary tract infections (UTI) are one of the most common infections in developed countries1. Infection rates are similar between females and males among neonates and the elderly2. Premenopausal adult women, however, have a greatly increased incidence of community-acquired UTI compared to men2,3. Given that this disease primarily impacts women, fundamental and clinical research has overwhelmingly focused on UTI in females. However, UTI in men is a significant and understudied health care challenge4. Indeed, because UTI in men are associate....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Mouse experiments were conducted in accordance with approval of protocol number 2012-0024 by the Comité d'éthique en expérimentation animale Paris Centre et Sud (the ethics committee for animal experimentation), in application of the European Directive 2010/63 EU.

1. Preparation of Catheters

  1. Prepare one pediatric intravenous-access cannula for each group of mice to be infected. Using the inbuilt spring mechanism, divest each cannula of its needle, as instructed b.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

In the development of this protocol, cohorts of female and male C57Bl/6 mice aged 6 to 8 weeks were instilled, and bacterial burden evaluated in bladders at time points ranging from 1 hr to 30 days. The results from these studies are detailed elsewhere (Zychlinsky Scharff et al., pending). Here, we present representative data from 24 hr infections. Notably, bacterial burden was equivalent between male and female mice at 24 hr post-infection (Figure 1). Little var.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Transurethral instillation of male mice offers many new research opportunities into the influence of sex on bladder mucosal disease, but also presents several challenges. Foremost, one limitation is that the instillation may initially prove to be technically difficult, resulting in excessive inflammation during catheter insertion. Improvement in technique can be achieved by the instillation of dead mice with a colored solution, such as Evans blue dye. To confirm that the instillation is successful, bladders should be vis.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

We thank Dr Matthieu Rousseau for critical reading of the manuscript and the Laboratory of Dendritic Immunobiology for their helpful insights during the development of this protocol and project. This work was supported in part by funding from the European Union Seventh Framework Programme Marie Curie Action (PCIG11-GA- 2012-3221170, and the Immuno-Oncology LabEx (MAI).

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
BD Insyte Autoguard Shielded IV Catheters 24G, 0.7 mm external diameter, 14 mM long BD Medical 381811 or 381411* * catalog number is country-dependent
inoculating loop Greiner Bio-One 731171
LB Miller broth Difco 244620
LB Miller agar Difco 244520
Cuvettes Bio-rad 223-9955
syringes B Braun 9166017V
Thumb (Adson) forceps Fine Science Tools 11006-12
5 mL tubes, polypropylene Falcon 352063
Tissue Ruptor disposable probes Qiagen 990890
15 mL flip cap tubes Thermo Scientific 362694
DNAse Invitrogen 18047019
Liberase TM Sigma-Aldrich 5401119001 should be aliquotted and stored at -20 °C to avoid repeated freeze-thaw
100 µM MACS SmartStrainers  Miltenyi 130-098-463 compatible with 15 mL tubes, preferred
100 µm cell strainers  Falcon 352360 compatible with 50 mL tubes, if MACS Smart Strainers are not available
96 well plate Falcon 353077
Fc block BD Pharmingen 553142 anti-CD16/CD32
anti-mouse CD45 antibody BD Biosciences 561487 many different fluorescent conjugation options are available
5 mL tubes polystyrene with filter cap Falcon 352235
insulin syringe Terumo BS05M2913
hand held homogenizer Qiagen 9001272 TissueRuptor
flow cytometer BD Biosciences N/A Fortessa SORP 
Flow cytometry software BD Biosciences N/A Diva

  1. Hooton, T. M., Stamm, W. E. Diagnosis and treatment of uncomplicated urinary tract infection. Infect Dis Clin North Am. 11 (3), 551-581 (1997).
  2. Harper, M., Fowlis, G. Management of urinary tract infections in men. Trends in Urology, Gynaecology & Sexual Health. 12 (1), 30-35 (2007).
  3. Foxman, B. The epidemiology of urinary tract infection. Nat Rev Urol. 7 (12), 653-660 (2010).
  4. Lipsky, B. A. Urinary tract infections in men. Epidemiology, pathophysiology, diagnosis, and treatment. Ann Intern Med. 110 (2), 138-150 (1989).
  5. Conway, L. J., Carter, E. J., Larson, E. L. Risk Factors for Nosocomial Bacteremia Secondary to Urinary Catheter-Associated Bacteriuria: A Systematic Review. Urol Nurs. 35 (4), 191-203 (2015).
  6. Markle, J. G., Fish, E. N. SeXX matters in immunity. Trends Immunol. 35 (3), 97-104 (2014).
  7. Yu, C. Y., Whitacre, C. C. Sex, MHC and complement C4 in autoimmune diseases. Trends Immunol. 25 (12), 694-699 (2004).
  8. Castelao, J. E., et al. Gender- and smoking-related bladder cancer risk. J Natl Cancer Inst. 93 (7), 538-545 (2001).
  9. Donsky, H., Coyle, S., Scosyrev, E., Messing, E. M. Sex differences in incidence and mortality of bladder and kidney cancers: national estimates from 49 countries. Urol Oncol. 32 (1), 40-e31 (2014).
  10. Garg, T., et al. Gender Disparities in Hematuria Evaluation and Bladder Cancer Diagnosis: A Population-Based Analysis. J Urol. , (2014).
  11. Dobruch, J., et al. Gender and Bladder Cancer: A Collaborative Review of Etiology, Biology, and Outcomes. Eur Urol. , (2015).
  12. Hsu, J. W., et al. Decreased tumorigenesis and mortality from bladder cancer in mice lacking urothelial androgen receptor. Am J Pathol. 182 (5), 1811-1820 (2013).
  13. El Behi, M., et al. An essential role for decorin in bladder cancer invasiveness. EMBO Mol Med. 5 (12), 1835-1851 (2013).
  14. Foxman, B. Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. Am J Med. 113, 05S-13S (2002).
  15. Ingersoll, M. A., Kline, K. A., Nielsen, H. V., Hultgren, S. J. G-CSF induction early in uropathogenic Escherichia coli infection of the urinary tract modulates host immunity. Cell Microbiol. 10 (12), 2568-2578 (2008).
  16. Mora-Bau, G., et al. Macrophages Subvert Adaptive Immunity to Urinary Tract Infection. PLoS Pathog. 11 (7), e1005044 (2015).
  17. Oliveira, P. A., et al. Technical Report: Technique of Bladder Catheterization in Female Mice and Rats for Intravesical Instillation in Models of Bladder Cancer. (Conference Title)39th Scand-LAS and ICLAS Joint Meeting. 36, 5-9 (2009).
  18. Seager, C. M., et al. Intravesical delivery of rapamycin suppresses tumorigenesis in a mouse model of progressive bladder cancer. Cancer Prev Res (Phila). 2 (12), 1008-1014 (2009).
  19. Hagberg, L., et al. Ascending, unobstructed urinary tract infection in mice caused by pyelonephritogenic Escherichia coli of human origin). Infect Immun. 40 (1), 273-283 (1983).
  20. Olson, P. D., Hruska, K. A., Hunstad, D. A. Androgens Enhance Male Urinary Tract Infection Severity in a New Model. J Am Soc Nephrol. , (2015).
  21. Knipper, J. A., et al. Interleukin-4 Receptor alpha Signaling in Myeloid Cells Controls Collagen Fibril Assembly in Skin Repair. Immunity. 43 (4), 803-816 (2015).
  22. Hung, C. S., Dodson, K. W., Hultgren, S. J. A murine model of urinary tract infection. Nat Protoc. 4 (8), 1230-1243 (2009).
  23. Wright, K. J., Seed, P. C., Hultgren, S. J. Development of intracellular bacterial communities of uropathogenic Escherichia coli depends on type 1 pili. Cell Microbiol. 9 (9), 2230-2241 (2007).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved