JoVE Logo
Faculty Resource Center

Sign In

Abstract

Genetics

Novel RNA-Binding Proteins Isolation by the RaPID Methodology

Published: September 30th, 2016

DOI:

10.3791/54467

1Faculty of Biology, Technion - Israel Institute of Technology, 2Department of Biomolecular Sciences, Weizmann Institute of Science

RNA-binding proteins (RBPs) play important roles in every aspect of RNA metabolism and regulation. Their identification is a major challenge in modern biology. Only a few in vitro and in vivo methods enable the identification of RBPs associated with a particular target mRNA. However, their main limitations are the identification of RBPs in a non-cellular environment (in vitro) or the low efficiency isolation of RNA of interest (in vivo). An RNA-binding protein purification and identification (RaPID) methodology was designed to overcome these limitations in yeast and enable efficient isolation of proteins that are associated in vivo. To achieve this, the RNA of interest is tagged with MS2 loops, and co-expressed with a fusion protein of an MS2-binding protein and a streptavidin-binding protein (SBP). Cells are then subjected to crosslinking and lysed, and complexes are isolated through streptavidin beads. The proteins that co-purify with the tagged RNA can then be determined by mass spectrometry. We recently used this protocol to identify novel proteins associated with the ER-associated PMP1 mRNA. Here, we provide a detailed protocol of RaPID, and discuss some of its limitations and advantages.

Tags

Keywords RNA binding Proteins

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved