JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Medicine

An Intramedullary Locking Nail for Standardized Fixation of Femur Osteotomies to Analyze Normal and Defective Bone Healing in Mice

Published: November 13th, 2016

DOI:

10.3791/54472

1Department of Trauma, Hand and Reconstructive Surgery, Saarland University, 2Institute for Clinical & Experimental Surgery, Saarland University, 3RISystem AG

This protocol describes an osteosynthesis technique using an intramedullary locking nail for standardized fixation of femur osteotomies, which can be used to analyze normal and defective bone healing in mice.

Bone healing models are essential to the development of new therapeutic strategies for clinical fracture treatment. Furthermore, mouse models are becoming more commonly used in trauma research. They offer a large number of mutant strains and antibodies for the analysis of the molecular mechanisms behind the highly differentiated process of bone healing. To control the biomechanical environment, standardized and well-characterized osteosynthesis techniques are mandatory in mice. Here, we report on the design and use of an intramedullary nail to stabilize open femur osteotomies in mice. The nail, made of medical-grade stainless steel, provides high axial and rotational stiffness. The implant further allows the creation of defined, constant osteotomy gap sizes from 0.00 mm to 2.00 mm. Intramedullary locking nail stabilization of femur osteotomies with gap sizes of 0.00 mm and 0.25 mm result in adequate bone healing through endochondral and intramembranous ossification. Stabilization of femur osteotomies with a gap size of 2.00 mm results in atrophic non-union. Thus, the intramedullary locking nail can be used in healing and non-healing models. A further advantage of the use of the nail compared to other open bone healing models is the possibility to adequately fix bone substitutes and scaffolds in order to study the process of osseous integration. A disadvantage of the use of the intramedullary nail is the more invasive surgical procedure, inherent to all open procedures compared to closed models. A further disadvantage may be the induction of some damage to the intramedullary cavity, inherent to all intramedullary stabilization techniques compared to extramedullary stabilization procedures.

The biology of bone healing may be studied in vitro using cell and spheroid cultures, but it also requires in vivo approaches using animal studies. While large-animal experiments still play an important role in preclinical testing, early stage testing of products or hypotheses has changed during the last 10 years and is nowadays often conducted in small animal models1. This switch was performed for several reasons. Production and maintenance of mice and rats are cheaper compared to pigs and sheep. In addition, small animals have shorter reproduction times and shorter normal healing periods, both of which facilitate the performance of large....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

All procedures were IACUC-approved and followed institutional guidelines (Landesamt für Verbraucherschutz, Zentralstelle Amtstierärztlicher Dienst, Saarbrücken, Germany). Analgesia and infection prevention should be in agreement with the respective guidelines of the country and institution where the experiments are to be performed.

1. Preparation of Implants and Surgical Instruments

  1. Select a scalpel blade (size 15), small preparation scissors, fine forceps, dressing .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The overall time for the surgical procedure was about 30 min from skin incision to wound closure. Using the surgical implants provided, surgery can be performed without a stereo-microscope. Postoperatively, the animals were monitored daily. Post-operative analgesia was terminated after 3 days because none of the animals showed evidence of pain (vocalization, restlessness, lack of mobility, failure to groom, abnormal posture, or lack of normal interest in surroundings) after this time peri.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The most critical steps of the surgical technique are the correct positioning of the nail, the aiming device, and the pins. The nail has to be inserted completely to the marked indent at the distal end of the nail, because a protrusion of the nail into the knee joint at the level of the condyles can restrict the movement of the knee (Figure 3 A). Therefore, the size of the femur and, accordingly, the body weight of the animals, must be considered. The surgeon should also pay special attention to the fina.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This work was supported by RISystem AG, Davos, Switzerland.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
MouseNail RISystem AG 221,122
MouseNail aiming device RISystem AG 221,201
MouseNail interlocking pin RISystem AG 221,121
Centering bit RISystem AG 592,205
Drill bit RISystem AG 590,200
Gigli wire saw RISystem AG 590,100
Suture (5-0 Prolene) Ethicon 8614H
Forceps Braun Aesculap AG &CoKG  BD520R
Dressing forceps Braun Aesculap AG &CoKG  BJ009R
Scissors Braun Aesculap AG &CoKG  BC100R
Needle holder Braun Aesculap AG &CoKG  BM024R
24G needle BD Mircolance 3 304100
27G needle Braun Melsungen AG 9186182
Scalpel blade size 15 Braun Aesculap AG &CoKG  16600525
Pincers Knipex 7932125
Heat radiator Sanitas 605.25
Depilatory cream Asid bonz GmbH                NDXZ10
Eye lubricant Bayer Vital GmbH 2182442
Xylazine Bayer Vital GmbH 1320422
Ketamine Serumwerke Bernburg 7005294
Tramadol Grünenthal GmbH 2256241
Disinfection solution (SoftaseptN) Braun Melsungen AG 8505018
CD-1 mice Charles River 22

  1. Histing, T., et al. Small animal bone healing models: standards, tips, and pitfalls results of a consensus meeting. Bone. 49 (4), 591-599 (2011).
  2. Claes, L., Augat, P., Suger, G., Wilke, H. J. Influence of size and stability of the osteotomy gap on the success of fracture healing. J Orthop Res. 15 (4), 577-584 (1997).
  3. Histing, T., et al. Characterization of the healing process in non-stabilized and stabilized femur fractures in mice. Arch Orthop Trauma Surg. 136 (2), 203-211 (2016).
  4. Histing, T., et al. Ex vivo analysis of rotational stiffness of different osteosynthesis techniques in mouse femur fracture. J Orthop Res. 27 (9), 1152-1156 (2009).
  5. Holstein, J. H., et al. Development of a stable closed femoral fracture model in mice. J Surg Res. 153 (1), 71-75 (2009).
  6. Garcia, P., et al. The LockingMouseNail-a new implant for standardized stable osteosynthesis in mice. J Surg Res. 169 (2), 220-226 (2011).
  7. Cheung, K. M., Kaluarachi, K., Andrew, G., Lu, W., Chan, D., Cheah, K. S. An externally fixed femoral fracture model for mice. J Orthop Res. 21 (4), 685-690 (2003).
  8. Garcia, P., et al. A new technique for internal fixation of femoral fractures in mice: impact of stability on fracture healing. J Biomech. 41 (8), 1689-1696 (2008).
  9. Histing, T., et al. An internal locking plate to study intramembranous bone healing in a mouse femur fracture model. J Orthop Res. 28 (3), 397-402 (2010).
  10. Thompson, Z., Miclau, T., Hu, D., Helms, J. A. A model for intramembranous ossification during fracture healing. J Orthop Res. 20 (5), 1091-1098 (2002).
  11. Hiltunen, A., Vuorio, E., Aro, H. T. A standardized experimental fracture in the mouse tibia. J Orthop Res. 11 (2), 305-312 (1993).
  12. Manigrasso, M. B., O'Connor, J. P. Characterization of a closed femur fracture model in mice. J Orthop Trauma. 18 (10), 687-695 (2004).
  13. Lovati, A. B., et al. Diabetic mouse model of orthopaedic implant-related Staphylococcus aureus infection. PLoS One. 8 (6), e67628 (2013).
  14. Slade Shantz, J. A., Yu, Y. Y., Andres, W., Miclau, T., Marcucio, R. Modulation of macrophage activity during fracture repair has differential effects in young adult and elderly mice. J Orthop Trauma. 28, 10-14 (2014).
  15. Claes, L. E., et al. Effects of mechanical factors on the fracture healing process. Clin Orthop Relat Res. 355 (Suppl), 132-147 (1998).
  16. Gröngröft, I., et al. Fixation compliance in a mouse osteotomy model induces two different processes of bone healing but does not lead to delayed union. J Biomech. 18 (13), 2089-2096 (2009).
  17. Glatt, V., Matthys, R. Adjustable stiffness, external fixator for the rat femur osteotomy and segmental bone defect models. J Vis Exp. (9), e51558 (2014).
  18. Manassero, M., et al. A novel murine femoral segmental critical-sized defect model stabilized by plate osteosynthesis for bone tissue engineering purposes. Tissue Eng Part C Methods. 19 (4), 271-280 (2013).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved