JoVE Logo
Faculty Resource Center

Sign In

Abstract

Chemistry

The Synthesis of [Sn10(Si(SiMe3)3)4]2- Using a Metastable Sn(I) Halide Solution Synthesized via a Co-condensation Technique

Published: November 28th, 2016

DOI:

10.3791/54498

1Chemistry Department, Institute of Inorganic Chemistry, University of Tübingen

The number of well-characterized metalloid tin clusters, synthesized by applying the disproportionation of a metastable Sn(I) halide in the presence of a sterically demanding ligand, has increased in recent years. The metastable Sn(I) halide is synthesized at "outer space conditions" via the preparative co-condensation technique. Thereby, the subhalide is synthesized in an oven at high temperatures, around 1,300 °C, and at reduced pressure by the reaction of elemental tin with hydrogen halide gas (e.g., HCl). The subhalide (e.g., SnCl) is trapped within a matrix of an inert solvent, like toluene at -196 °C. Heating the solid matrix to -78 °C gives a metastable solution of the subhalide. The metastable subhalide solution is highly reactive but can be stored at -78 °C for several weeks. On heating the solution to room temperature, a disproportionation reaction occurs, leading to elemental tin and the corresponding dihalide. By applying bulky ligands like Si(SiMe3)3, the intermediate metalloid cluster compounds can be trapped before complete disproportionation to elemental tin. Hence, the reaction of a metastable Sn(I)Cl solution with Li-Si(SiMe3)3 gives [Sn10(Si(SiMe3)3)4]2- 1 as black crystals in high yield. 1 is formed via a complex reaction sequence including salt metathesis, disproportionation, and degradation of larger clusters. Further, 1 can be analyzed by various methods like NMR or single crystal X-ray structure analysis.

Tags

Keywords Sn I Halide Solution

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved