JoVE Logo
Faculty Resource Center

Sign In





Representative Results






Synthesis of a Water-soluble Metal–Organic Complex Array

Published: October 8th, 2016



1International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 2Department of Chemistry, University of California–Berkeley, 3Materials Sciences Division, Lawrence Berkeley National Laboratory, 4Kavli Energy NanoSciences Institute at Berkeley, University of California–Berkeley

A potential general method for the synthesis of water-soluble multimetallic peptidic arrays containing a predetermined sequence of metal centers is presented.

We demonstrate a method for the synthesis of a water-soluble multimetallic peptidic array containing a predetermined sequence of metal centers such as Ru(II), Pt(II), and Rh(III). The compound, named as a water-soluble metal-organic complex array (WSMOCA), is obtained through 1) the conventional solution-chemistry-based preparation of the corresponding metal complex monomers having a 9-fluorenylmethyloxycarbonyl (Fmoc)-protected amino acid moiety and 2) their sequential coupling together with other water-soluble organic building units on the surface-functionalized polymeric resin by following the procedures originally developed for the solid-phase synthesis of polypeptides, with proper modifications. Traces of reactions determined by mass spectrometric analysis at the representative coupling steps in stage 2 confirm the selective construction of a predetermined sequence of metal centers along with the peptide backbone. The WSMOCA cleaved from the resin at the end of stage 2 has a certain level of solubility in aqueous media dependent on the pH value and/or salt content, which is useful for the purification of the compound.

Controlled synthesis of complicated molecular structures has always been a major issue in synthetic chemistry. From this point of view, to synthesize multinuclear heterometallic complexes in a designable fashion is still a worthy subject to be challenged in the field of inorganic chemistry because of the numbers of possible structural outcomes from the ligand-metallation-based approach that is commonly used for the preparation of monomeric metal complexes. Although several examples of multinuclear heterometallic complexes have been reported so far1,2,3, the trial-and-error or arduous nature of their synthesis necessitates the development of a simple method ....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Preparation of Metal Complex Monomers (2 CAS RN 1381776-70-0, 3 CAS RN 1261168-42-6, 4 CAS RN 1261168-43-7; Figure 1)

  1. Preparation of Ru monomer 2
    1. Combine the organic precursor (59 CAS RN 1381776-63-1; Figure 1) (380 mg, 0.48 mmol) and [Ru(p-cymene)Cl2] dimer (224 mg, 0.37 mmol) with a stir bar in a 100 ml single-neck round-bottom flask.
    2. Add methanol (MeOH) (25 ml) to the mixture, connect a condenser to .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Figure 1 shows the molecular structures of the final target compound, precursors, and intermediates. Figure 2 shows the images of the resin and Figure 3 shows the MALDI-TOF mass spectra of samples at selected procedure steps. Images from Figure 2a to 2h show the changes in the color and appearance of the resin that it undergoes during the reaction steps in section 2 of the protocol. MALDI-TOF mass spectro.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Perfect removal of the undesired chemicals from the resin is not always possible simply by washing with solvents that can easily dissolve those chemicals. A key technique to efficiently wash the resin is to cause it to swell and shrink repetitively so that the chemicals remaining inside will be forced out. This is why the resin in our procedure is treated with CH2Cl2 and MeOH alternately as it is washed (e.g., protocol 2.1.4).

As a consequence of successive multi.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This work was supported by the World Premier International Research Center (WPI) Initiative on Materials Nanoarchitectonics and a Grant-in-Aid for Challenging Exploratory Research (No. 26620139), both of which were provided from MEXT, Japan.


Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Dichloro(p‐cymene)ruthenium(II), dimer Kanto Chemical 11443-65
Dichloro(1,5-cyclooctadiene)platinum(II) TCI D3592
Rhodium(III) chloride trihydrate Kanto Chemical 36018-62
Phosphate buffered saline, tablet Sigma Aldrich P4417-50TAB 
NovaSyn TG Sieber resin Novabiochem 8.55013.0005
Benzoic anhydride Kanto Chemical 04116-30
Fmoc-Glu(OtBu)-OH・H2O Watanabe Chemical Industries K00428
Trifluoroacetic acid Kanto Chemical 40578-30
Triethylsilane TCI T0662
2-[2-(2-Methoxyethoxy)ethoxy]acetic acid Sigma Aldrich 407003 Dried over 3Å sieves
Dithranol Wako Pure Chemical Industries 191502
N-methylimidazole TCI M0508
N‐ethyldiisopropylamine Kanto Chemical 14338-32
Piperidine Kanto Chemical 32249-30
4'-(4-methylphenyl)-2,2':6',2"-terpyridine Sigma Aldrich 496375
Dehydrated grade dimethylsulfoxide Kanto Chemical 10380-05 
Dehydrated grade methanol Kanto Chemical 25506-05 
Dehydrated grade N,N‐Dimethylformamide Kanto Chemical 11339-84 Amine Free
Dehydrated grade dichloromethane Kanto Chemical 11338-84
MeOH Kanto Chemical 25183-81 
Dimethylsulfoxide Kanto Chemical 10378-70
Ethyl acetate Kanto Chemical 14029-81
Acetonitrile Kanto Chemical 01031-70 
1,2-dichloroethane Kanto Chemical 10149-00
Diethyl ether Kanto Chemical 14134-00 
Dichloromethane Kanto Chemical 10158-81

  1. Takanashi, K., et al. Heterometal Assembly in Dendritic Polyphenylazomethines. Bull. Chem. Soc. Jpn. 80, 1563-1572 (2007).
  2. Packheiser, R., Ecorchard, P., Rüffer, T., Lang, H. Heteromultimetallic Transition Metal Complexes Based on Unsymmetrical Platinum(II) Bis-Acetylides. Organometallics. 27, 3534-3536 (2008).
  3. Sculfort, S., Braunstein, P. Intramolecular d10-d10 Interactions in Heterometallic Clusters of the Transition Metals. Chem. Soc. Rev. 40, 2741-2760 (2011).
  4. Vairaprakash, P., Ueki, H., Tashiro, K., Yaghi, O. M. Synthesis of Metal-Organic Complex Arrays. J. Am. Chem. Soc. 133, 759-761 (2011).
  5. Jacoby, M. Synthesis: Method Couples Various Metals in Predetermined Sequences. C&EN. 89, (2011).
  6. White, P., Eds Dörner, B. Synthetic Notes. Peptide Synthesis 2008/2009. , (2009).
  7. Sajna, K. V., Fracaroli, A. M., Yaghi, O. M., Tashiro, K. Modular Synthesis of Metal-Organic Complex Arrays Containing Precisely Designed Metal Sequences. Inorg. Chem. 54, 1197-1199 (2015).
  8. Sukul, P. K., et al. A Water-Soluble Metal-Organic Complex Array as a Multinuclear Heterometallic Peptide Amphiphile That Shows Unconventional Anion Dependency in Its Self-Assembly. Chem. Commun. 52, 1579-1581 (2016).
  9. Fracaroli, A. M., Tashiro, K., Yaghi, O. M. Isomers of Metal-Organic Complex Arrays. Inorg. Chem. 51, 6437-6439 (2012).
  10. Gude, M., Ryf, J., White, P. D. An Accurate Method for the Quantitation of Fmoc-Derivatized Solid Phase Supports. Letters in Peptide Science. 9, 203-206 (2002).
  11. Merrifield, R. B. Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide. J. Am. Chem. Soc. 85, 2149-2154 (1963).

This article has been published

Video Coming Soon

JoVE Logo


Terms of Use





Copyright © 2024 MyJoVE Corporation. All rights reserved