A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
This protocol outlines the cefoperazone mouse model of Clostridium difficile infection (CDI) using a clinically-relevant and genetically-tractable strain, R20291. Emphasis on clinical disease monitoring, C. difficile bacterial enumeration, toxin cytotoxicity, and histopathological changes throughout CDI in a mouse model are detailed in the protocol.
Clostridium difficile is an anaerobic, gram-positive, spore-forming enteric pathogen that is associated with increasing morbidity and mortality and consequently poses an urgent threat to public health. Recurrence of a C. difficile infection (CDI) after successful treatment with antibiotics is high, occurring in 20-30% of patients, thus necessitating the discovery of novel therapeutics against this pathogen. Current animal models of CDI result in high mortality rates and thus do not approximate the chronic, insidious disease manifestations seen in humans with CDI. To evaluate therapeutics against C. difficile, a mouse model approximating human disease utilizing a clinically-relevant strain is needed. This protocol outlines the cefoperazone mouse model of CDI using a clinically-relevant and genetically-tractable strain, R20291. Techniques for clinical disease monitoring, C. difficile bacterial enumeration, toxin cytotoxicity, and histopathological changes throughout CDI in a mouse model are detailed in the protocol. Compared to other mouse models of CDI, this model is not uniformly lethal at the dose administered, allowing for the observation of a prolonged clinical course of infection concordant with the human disease. Therefore, this cefoperazone mouse model of CDI proves a valuable experimental platform to assess the effects of novel therapeutics on the amelioration of clinical disease and on the restoration of colonization resistance against C. difficile.
Clostridium difficile is an anaerobic, gram-positive, spore-forming bacillus that causes life-threatening diarrhea1. C. difficile infection (CDI) is associated with increased human morbidity and mortality and results in over $ 4.8 billion in healthcare costs per year1-4. In 2013, the Centers for Disease Control and Prevention categorized C. difficile as an urgent antibiotic resistance risk, indicating that it poses an urgent threat to public health1. Currently, antibiotic treatment with vancomycin and metronidazole are considered the standard of care for CDI5. Unfortunately, recurrence of CDI after successful treatment with antibiotics is high, occurring in 20 - 30% of patients2,5-7. Therefore, the discovery of novel therapeutics against this enteric pathogen is necessary. To evaluate therapeutics against C. difficile, an animal model approximating the human disease in a clinically-relevant strain is needed.
Initially, Koch's postulates were established for C. difficile in 1977 using a clindamycin-treated Syrian hamster model8. This model is still utilized today to investigate the effects of C. difficile toxins on pathogenesis9,10. However, CDI in the hamster model results in high mortality rates and does not approximate the chronic insidious disease manifestations that can be seen in humans with CDI 10,11. Based on the accessibility and reagent availability of murine platforms in research, a mouse model of CDI is relevant.
In 2008, a robust mouse model of CDI was established by treating mice with an antibiotic cocktail in drinking water (kanamycin, gentamicin, colistin, metronidazole, and vancomycin) for 3 days followed by an intraperitoneal injection of clindamycin12. This rendered mice susceptible to CDI and severe colitis. Depending on the inoculum dose administered, a range of clinical signs and lethality can be observed using this model. Since this time, various antibiotic regimens have been investigated that alter the murine gut microbiota, decreasing colonization resistance to the point where C. difficile can colonize the gastrointestinal tract (reviewed in Best et al. and Lawley & Young)13,14.
More recently, a broad spectrum cephalosporin, cefoperazone, given in the drinking water for 5 or 10 days reproducibly renders mice susceptible to CDI15. Since administration of third-generation cephalosporins are associated with an increased risk of CDI in humans, use of the cefoperazone model more accurately reflects naturally-occurring disease16. Cefoperazone-treated mice susceptible to C. difficile have been challenged with both C. difficile spores and vegetative cells of a variety of strains ranging in clinical relevance and virulence17. Despite some of the original studies utilizing C. difficile vegetative cells as the infectious form, C. difficile spores are considered the major mode of transmission18.
In the last decade, C. difficile R20291, a NAP1/BI/027 strain, has emerged, causing epidemics of CDI19,20. We sought to determine the clinical course of disease when cefoperazone-treated mice were challenged with the clinically-relevant and genetically-tractable C. difficile strain, R20291. This protocol details the clinical course, including weight loss, bacterial colonization, toxin cytotoxicity, and histopathological changes in the gastrointestinal tract of mice challenged with C. difficile R20291 spores. Overall, this mouse model proves to be a valuable experimental platform for CDI approximating human disease. This characterized mouse model can thus be utilized to assess the effects of novel therapeutics on the amelioration of clinical disease and on the restoration of colonization resistance against C. difficile.
Ethical Statement:
The Institutional Animal Care and Use Committee (IACUC) at North Carolina State University College of Veterinary Medicine (NCSU) approved this study. The NCSU Animal Care and Use policy applies standards and guidelines set forth in the Animal Welfare Act and Health Research Extension Act of 1985. Laboratory animal facilities at NCSU adhere to guidelines set forth in the Guide for the Care and Use of Laboratory Animals. The animals' health statuses were assessed daily, and moribund animals were humanely euthanized by CO2 asphyxiation followed by secondary measures. Trained animal technicians or a veterinarian performed animal husbandry in an AAALAC-accredited facility during this study.
1. Administration of the Antibiotic Cefoperazone in Drinking Water to Achieve Susceptibility to C. difficile Colonization and Disease
NOTES: 5- to 8-week-old C57BL/6 WT mice (females and males) were purchased and quarantined for 1 week prior to starting the antibiotic water administration. Following quarantine, the mice were housed with autoclaved food, bedding, and water. Cage changes were performed weekly by laboratory staff in a laminar flow hood.
2. Preparation of the C. difficile Spore Inoculum and the Oral Gavage of the Mice
NOTE: Before beginning, ensure that the following items are placed in the anaerobic chamber for at least 24 hr: 1x phosphate-buffered saline (PBS; see Materials), taurocholate cycloserine cefoxitin fructose agar (TCCFA) plates (see Materials and the supplemental file), and a sterile L-shaped spreader.
NOTE: Mice challenged with C. difficile spores should be housed in a Biosafety Level 2 animal facility.
3. Monitoring Mouse Weight Loss and Clinical Signs of Disease throughout C. difficile Infection
4. Bacterial Enumeration of C. difficile from Mouse Feces and Cecal Content
NOTE: Before beginning, ensure that the following items are placed into the anaerobic chamber for at least 24 hr: 1x PBS (see Materials), TCCFA plates (see Materials), a sterile L-shaped spreader, and sterile microcentrifuge tubes and/or PCR plates for dilutions.
5. Vero Cell Cytotoxicity Assay to Quantify C. difficile Toxin Cytotoxicity
NOTE: It is recommended that this assay be performed after completion of the mouse model on samples collected at necropsy and stored at -80 °C. Aseptic cell culture techniques are essential for preventing contamination of Vero cells during this assay. This protocol takes 2 days to perform. All feces and intestinal content utilized in this assay must be stored in a weighed, sterile microcentrifuge tube (denoted with the "tube weight," see section above). The final tube weight (including the contents) is measured via an analytical scale to the nearest four decimal places (see section above). Use of a multi-channel pipette is recommended for this assay.
NOTE: Before beginning, ensure that the following items are available: Vero Cells, Dulbecco's modification of Eagle medium (DMEM) 1x with 10% heat-inactivated fetal bovine serum (FBS) and 1% penicillin/streptomycin media (denoted as "DMEM 1x media;" see Materials and the supplemental file), 0.25% Trypsin-EDTA, 1x PBS, 0.4% Trypan Blue, a 96-well cell culture flat-bottom plate, a 96-well filter plate, Clostridium difficile Toxin A (aliquot in 3 µl at 1 µg/µl in Ultra-Pure water and store at -80 °C), Clostridium difficile Antitoxin, a worksheet (for calculations and plate maps; see supplemental files).
NOTE: Caution should be taken during this assay for personnel exposure to C. difficile and its toxin.
During a representative study, 5-week-old C57BL/6 WT mice were pretreated with cefoperazone in their drinking water (0.5 mg/ml) for 5 days and allowed a 2-day wash out with regular drinking water. Mice were challenged with 105 spores of C. difficile R20291 via oral gavage on day 0 (Figure 1A). Mice were monitored for weight loss and clinical signs (lethargy, inappetence, diarrhea, and hunched posture) of CDI for 14 days. The challenge of C57BL/6 WT mic...
This protocol characterizes the clinical course, including weight loss, bacterial colonization, toxin cytotoxicity, and histopathological changes in the gastrointestinal tract, of antibiotic-treated mice challenged with C. difficile R20291 spores. There are several critical steps within the protocol where attention to detail is essential. Accurate calculation of the C. difficile spore inoculum is critical. This calculation is based on the original C. difficile spore stock enumeration, which sho...
The authors have nothing to disclose at this time.
The authors would like to thank Trevor Lawley at the Wellcome Trust Sanger Institute for C. difficile R20291 spores and James S. Guy at the North Carolina State University College of Veterinary Medicine for Vero cells, both utilized in this manuscript. Animal histopathology was performed in the LCCC Animal Histopathology Core Facility at the University of North Carolina at Chapel Hill, with special assistance from Traci Raley and Amanda Brown. The LCCC Animal Histopathology Core is supported in part by an NCI Center Core Support Grant (2P30CA016086-40) to the UNC Lineberger Comprehensive Cancer Center. We would also like to thank Vincent Young, Anna Seekatz, Jhansi Leslie, and Cassie Schumacher for helpful discussions on the Vero cell cytotoxicity assay protocol. JAW is funded by the Ruth L. Kirschstein National Research Service Award Research Training grant T32OD011130 by NIH. CMT is funded by the career development award in metabolomics grant K01GM109236 by the NIGMS of the NIH.
Name | Company | Catalog Number | Comments |
#62 Perisept Sporidicial Disinfectant Cleaner | SSS Navigator | 48027 | This product will require dilution as recommended by the manufacturer |
0.22 μm filter | Fisherbrand | 09-720-3 | Alternative to filter plate for indivdiual samples tested in the Vero Cell Assay |
0.25% Trypsin-EDTA | Gibco | 25200-056 | Needs to be heated in water bath at 37 °C prior to use |
0.4% Trypan Blue | Gibco | 15250-061 | |
1% Peniciilin/Streptomycin | Gibco | 15070-063 | |
10% heat inactivated FBS | Gibco | 16140-071 | Needs to be heated in water bath at 37 °C prior to use |
1 ml plastic syringe | BD Medical Supplies | 309628 | |
1x PBS | Gibco | 10010-023 | |
2 ml Micro Centrifuge Screw Cap | Corning | 430917 | |
96 well cell culture flat bottom plate | Costar Corning | CL3595 | |
96 well filter plate | Millipore | MSGVS2210 | |
Adhesive Seal | ThermoScientific | AB-0558 | |
Bacto Agar | Becton Dickinson | 214010 | Part of TCCFA plates (see below) |
Bacto Proteose Peptone | Becton Dickinson | 211684 | Part of TCCFA plates (see below) |
Cefoperazone | MP Bioworks | 199695 | |
Cefoxitine | Sigma | C47856 | Part of TCCFA plates (see below) |
Clostridium difficile Antitoxin Kit | Tech Labs | T5000 | Used as control for Vero Cell Assay |
Clostridium difficile Toxin A | List Biological Labs | 152C | Positive control for Vero Cell Assay |
D-cycloserine | Sigma | C6880 | Part of TCCFA plates (see below) |
Distilled Water | Gibco | 15230 | |
DMEM 1x Media | Gibco | 11965-092 | Needs to be heated in water bath at 37 °C prior to use |
Fructose | Fisher | L95500 | Part of TCCFA plates (see below) |
Hemocytometer | Bright-Line, Sigma | Z359629 | |
KH2PO4 | Fisher | P285-500 | Part of TCCFA plates (see below) |
MgSO4 (anhydrous) | Sigma | M2643 | Part of TCCFA plates (see below) |
Millex-GS 0.22 μm filter | Millex-GS | SLGS033SS | Filter for TCCFA plates |
Na2HPO4 | Sigma | S-0876 | Part of TCCFA plates (see below) |
NaCl | Fisher | S640-3 | Part of TCCFA plates (see below) |
Number 10 disposable scalpel blade | Miltex, Inc | 4-410 | |
PCR Plates | Fisherbrand | 14230244 | |
Plastic petri dish | Kord-Valmark Brand | 2900 | |
Sterile plastic L-shaped cell spreader | Fisherbrand | 14-665-230 | |
Syringe Stepper | Dymax Corporation | T15469 | |
Taurocholate | Sigma | T4009 | Part of TCCFA plates (see below) |
Ultrapure distilled water | Invitrogen | 10977-015 | |
C57BL/6J Mice | The Jackson Laboratory | 664 | Mice should be 5 - 8 weeks of age |
Olympus BX43F light microscope | Olympus Life Science | ||
DP27 camera | Olympus Life Science | ||
cellSens Dimension software | Olympus Life Science |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved