A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
The abdominal dorsal vessel of the honey bee and other insects serves as the functional equivalent of the mammalian heart and plays an important role in nutrient transport, waste removal, immune function, and more. Here we describe a protocol for the visualization and pharmacological manipulation of bee heart rate.
The European honey bee, Apis mellifera L., is a valuable agricultural and commercial resource noted for producing honey and providing crop pollination services, as well as an important model social insect used to study memory and learning, aging, and more. Here we describe a detailed protocol for the dissection of the dorsal abdominal wall of a bee in order to visualize its dorsal vessel, which serves the role of the heart in the insect. A successful dissection will expose a functional heart that, under the proper conditions, can maintain a steady heartbeat for an extended period of time. This allows the investigator to manipulate heart rate through the application of cardiomodulatory compounds to the dorsal vessel. By using either a digital microscope or a microscope equipped with a digital camera, the investigator can make video recordings of the dorsal vessel before and after treatment with test compounds. The videos can then be scored at a time convenient to the user in order to determine changes in heart rate, as well as changes in the pattern of heartbeats, following treatment. The advantages of this protocol are that it is relatively inexpensive to set up, easy to learn, requires little space or equipment, and takes very little time to conduct.
The overall goal of this methodology is to allow the investigator to quickly and easily observe and quantify the effect that a pharmacological agent has on the heart rate of honey bees. Bees, like other insects, have an open circulatory system that disseminates hemolymph, the insect equivalent of blood, throughout the body cavity, known as the hemocoel. The circulation of hemolymph is essential for the transport of nutrients, immune factors, waste products, as well neurohormones and other signaling molecules1. Circulation is facilitated by the dorsal vessel, which extends along the dorsal midline of the insect, as well as accessory pulsatile organs. The dorsal vessel is divided into two functionally distinct sections, designated the heart in the abdomen and the aorta in the thorax and head. Propagated contractions in the heart pump hemolymph towards the thorax and head, while accessory pulsatile organs ensure hemolymph flow to the extremities.
Insect cardiac function can be observed using a variety of methods, depending upon the size, physiology, or life stage of the insect. A common approach for observing heart rate in larvae or smaller insects is the use of intravital imaging2. This method is less useful in adult bees, however, as it can be difficult to clearly view the dorsal vessel through the abdominal wall. An established approach for recording heart rate in a variety of insects, including bees, is the use of contact thermography, which utilizes thermistors applied to the exterior of the insect to detect cardiac pulsations3,4. Heart rate in adult bees has also been recorded using an electrophysiological technique to measure an electrical impedance signal4,5. This technique requires the insertion of electrodes into the animal next to the heart and the use of an impedance converter to record heartbeats4. Similarly, electrocardiograms have been used to detect electrical signals produced by the heart and combined with video recording of the bee to observe changes in cardiac activity6. A distinct advantage to these approaches is that heart rate is assessed in an intact, living bee, rather than in a dissected specimen, which helps to ensure the availability of the full range of physiological responses in the subject. The challenges of these approaches include accounting for immobilization or anesthetization of the subject, the need to limit outside variables and stimuli that might alter heart rate, as well as determining an appropriate delivery method when testing pharmacological agents.
Another approach that has been used for studying bee cardiac activity is to partially dissect the insect in order to expose the heart, then measure dorsal vessel contractions using a force displacement transducer7. In this protocol, the heart is continually bathed with running physiological saline and test compounds can be dissolved in this solution for application to the subject7. A significant difference between this method and those previously described is that the ventral nerve cord is removed, eliminating the role that the central nervous system has been shown to play in modulating heart rate5. The result is that the baseline heartbeat, which is usually quite erratic, stabilizes at a much lower frequency and amplitude than is typically observed in a living insect5,7. What all of these methods have in common is that they require highly specialized and often expensive equipment, in addition to a certain level of expertise, in order to be conducted. Perhaps the greatest disadvantage is that none of these approaches are particularly well suited to experiments that involve testing a large number of subjects, such as screening a library of potentially cardiomodulatory compounds.
The greatest strength of the approach described here is its simplicity. The protocol is relatively easy to master, the setup requires little space, and only a minimal financial input is necessary. The method requires little more than some bees, a few surgical instruments, an isotonic solution, and either a digital microscope or a traditional microscope with a digital camera. Bees are dissected to visualize the dorsal vessel and digital videos are used to record heart rate before and after treatment with pharmacological agents. Although video recording is not actually necessary to observe changes in heart rate, it will greatly increase throughput (i.e., the number of subjects that can be processed in a given amount of time). The investigator can maximize efficiency by recording a large number of videos at once and then later scoring these videos at a more convenient time. Another advantage of this approach is that videos allow the investigator to start over, should the scoring process be interrupted, and make it easier for the viewer to be blinded to the treatment in order to reduce bias.
1. Collection and Preparation of Test Subjects
2. Dissection of Dorsal Abdominal Wall
NOTE: Bees should be alive at the time of dissection.
Figure 1: Dorsal view of bee abdomen. The initial incision should be made between the first and second tergites, as denoted by the red line. Scale bar = 1 mm. Please click here to view a larger version of this figure.
Figure 2: Lateral view of bee abdomen. The second and third incisions should be made along either side of the abdomen, as denoted by the red line. Scale bar = 1 mm. Please click here to view a larger version of this figure.
Figure 3: View of the dorsal vessel. Once the gut and stinger have been removed, the dorsal vessel is visible along the midline of the dissected dorsal abdominal wall. Scale bar = 1 mm. Please click here to view a larger version of this figure.
3. Observation and Modulation of Heart Rate
Since many of the pharmacologically active compounds that might be tested using this protocol are not soluble in water, it is necessary to have a reliable solvent that will allow test compounds to be delivered via the isotonic solution used to bathe the dorsal vessel. Dimethyl sulfoxide (DMSO) is a solvent that is commonly used as a vehicle for delivering experimental drugs and other compounds in animals8, and it has been used successfully for this purpose in studies examining ...
The protocol presented here provides a simple and effective approach to testing pharmacological compounds for their effects on honey bee heart rate. As observed in prior experiments that either transect the ventral nerve cord of a living insect5 or dissect out the ventral nerve cord when exposing the dorsal vessel7, the loss of central nervous system regulation results in a stable, low frequency heartbeat. The low frequency of beats allows the investigator to visually assess heart rate without havin...
The authors have nothing to disclose.
The authors thank Drs. Jeffrey Bloomquist and Daniel Swale for their technical comments and suggestions. This project was partially funded by the Department of Entomology and the College of Agriculture and Life Sciences at Virginia Tech.
Name | Company | Catalog Number | Comments |
Dino-Lite Edge digital USB microscope | Dino-Lite | AM4815ZT | Any digital microscope or similar setup will suffice |
Microscope stand | Dino-Lite | RK-10 | Any stand appropriate for the digital microscope |
Laptop or PC | Necessary for digital microscope | ||
Microdissection scissors (Vannas, 8 cm, Straight, 5 mm Blades) | World Precision Instruments | 14003 | Any similar scissors suitable for microdissection will suffice |
Microdissecting Forceps, 10.2 cm, Angled (2 pair) | World Precision Instruments | 504482 | Any similar forceps suitable for microdissection will suffice |
Ringers solution 1/4 strength tablets | Sigma-Aldrich | 96724-100TAB | |
Dissecting tray | Any surface suitable for microdissection | ||
Single channel 10 µl pipette | Any device capable of accurately delivering 10 µl volume | ||
Pipette tips | |||
Small beaker or container of water | Used to rinse instruments between subjects | ||
Hand tally counter | Office Depot | 295033 | Any similar product will suffice |
Timer | Office Depot | 644219 | Any similar product will suffice |
Deionized water | Preparation of Ringers solution and rinsing instruments |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved