JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Biology

Microscopia Eletrônica de Varredura (MEV) Protocolos para a Problemática da planta, oomiceto e amostras fúngicas

Published: February 3rd, 2017

DOI:

10.3791/55031

1Biodiversity and Conservation Department, Real Jardín Botánico, CSIC, 2Research Support Unit, Real Jardín Botánico, CSIC, 3Mycology Department, Real Jardín Botánico, CSIC, 4Division of Glycoscience, AlbaNova University Center, Royal Institute of Technology (KTH)

Problems in the processing of biological samples for scanning electron microscopy observation include cell collapse, treatment of samples from wet microenvironments and cell destruction. Low-cost and relatively rapid protocols suited for preparing challenging samples such as floral meristems, oomycete cysts, and fungi (Agaricales) are compiled and detailed here.

Os problemas mais comuns no processamento de amostras biológicas para observações ao microscópio eletrônico de varredura (MEV) incluem colapso das células, o tratamento de amostras de microambientes molhadas e destruição celular. Utilizando tecidos jovens florais, cistos oomicetos e esporos de fungos (Agaricales) como exemplos, protocolos específicos para processar amostras delicadas são descritos aqui que superar alguns dos principais desafios no tratamento da amostra para a captura de imagem sob o SEM.

meristemas florais fixos com FAA (formalina-acético-Álcool) e processados ​​com o Ponto Crítico Secador (CPD) não apresentaram colapso paredes celulares ou órgãos distorcidas. Estes resultados são cruciais para a reconstrução do desenvolvimento floral. Um tratamento à base de CPD semelhante de amostras de micro-ambientes molhados, tais como os cistos oomicetos fixadas com glutaraldeído, é ideal para testar o crescimento diferencial de características de diagnóstico (por exemplo, os espinhos de quisto) em diferentes tipos de substrates. A destruição das células ligadas a enfermeira esporos de fungos foi evitada após re-hidratação, desidratação, e o tratamento de CPD, um passo importante para mais estudos funcionais destas células.

Os protocolos detalhados aqui representam de baixo custo e alternativas rápidas para a aquisição de imagens de boa qualidade para reconstruir os processos de crescimento e estudar características de diagnóstico.

Na biologia, o uso de microscopia eletrônica de varredura (SEM) foi estendido para estudos de evolução estrutural, a morfologia comparativa, o desenvolvimento de órgãos, e caracterização de populações ou espécies 1. Com a sua visão bidimensional de estruturas microscópicas, áreas como a micromorfologia e sistemática lucrado com SEM técnica avanços desde a segunda metade do século 20. Por exemplo, a introdução da metodologia de revestimento por pulverização na década de 1970 fez eventuais observações de materiais delicados, como ápices vegetativos e flores que reforcem a imagem de tecidos não condutores 2,

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NOTA: Este protocolo inclui seis seções principais, três dedicados a organismos específicos (secções 1-3), e três que descrevem os procedimentos comuns a todos (4-6). Asteriscos (*) indicam passos modificados pelos pesquisadores.

1. Estudos de Desenvolvimento e Estruturas Vegetais completamente formado

  1. Recolha e fixação
    1. Se o material vegetal é coletado em um local sem acesso a uma câmara de exaustão, introduzir e imergir o material em 70% de e.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Desenvolvimento Floral e Fixação de Desenvolvimento e Estruturas Vegetais completamente formado

Usando o protocolo FAA-CPD descrito aqui, jovens e maduros tecidos vegetais são perfeitamente fixadas e desidratadas para geração de imagens SEM. Processos tais como o desenvolvimento floral pode ser reconstruído, porque a topografia ea forma dos botões não é distorcida por celular encolhendo (Figuras 1b, 1d, 4a-f)........

Log in or to access full content. Learn more about your institution’s access to JoVE content here

No que diz respeito aos protocolos SEM padrão, os procedimentos aqui apresentados incluem relativamente rápida, fácil de seguir, e metodologias de baixo custo. Dependendo da quantidade de amostras e na facilidade de processamento, que leva quatro a cinco dias para adquirir imagens de boa qualidade. Incluindo as precauções de segurança adequadas para a CPD e operação SEM, os procedimentos são fáceis de manusear. Um cuidado especial deve ser tomado com formalina e o glutaraldeído (consulte os passos 1.1.1 a 1.1.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Este projecto recebeu financiamento do programa de pesquisa e inovação Horizonte 2020 da União Europeia ao abrigo do acordo de subvenção No. 634429. Esta publicação reflecte apenas as opiniões do autor, ea Comissão Europeia não pode ser responsabilizada por qualquer uso que possa ser dado à informação nele contidas. Nós também reconhecemos a contribuição financeira do real Jardín Botánico, CSIC. SR é grato à União Europeia [ITN-SAPRO-238550] pelo apoio de sua pesquisa em Saprolegnia. Também quero agradecer a Francisco Calonge por gentilmente fornecer as imagens herculanea Phellorinia e B. Pueyo para o processamento de amostras (Figura 5). Todas as i....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
Acetic acidNo specific supplierSkin irritation, eye irritation
aluminium stubsTed Pella, Inc.16221www.tedpella.com
Centrifuge tubesNo specific supplier
Critical Point DryerPolaron Quatum TechnologiesCPD7501
D (+) GlucoseMerck1,083,421,000
Double sided sellotapeNo specific supplier
Ethanol absoluteNo specific supplier.Flammable
European bacteriological agarConda1800.00www.condalab.com
Filter paperNo specific supplier
ForcepsNo specific supplier
Formalin 4%No specific supplier.Harmful, acute toxicity, skin sensitisation, carcinogenicity. Flammable
Glass cover slipsNo specific supplier
Glass hermetic container No specific supplier
Glutaraldehyde 25% DC 253857.1611  (L)Dismadel S.L.3336www.dismadel.com
Mycological peptoneConda1922.00www.condalab.com
needlesNo specific supplier
Petri dishesNo specific supplier
Plastic containersNo specific supplier
Sample holder with lid  for the critical point dryer Ted Pella, Inc.4591www.tedpella.com
scalpelsNo specific supplier
Scanning Electron MicroscopeHitachiS3000N
Software for SEM
Solution A: NaH2PO4
Solution B: Na2HPO4
Specimen holdersNo specific supplier
Sputter coaterBalzersSCD 004
StereomicroscopeNo specific supplier
Transmission Electron Microscope (TEM) gridsElectron Microscopy SciencesG200 (Square Mesh)www.emsdiassum.com
TweezersNo specific supplier

  1. Endress, P. K., Baas, P., Gregory, M. Systematic plant morphology and anatomy: 50 years of progress. Taxon. 49 (3), 401-434 (2000).
  2. Falk, R. H., Gifford, E. M., Cutter, E. G. Scanning electron microscopy of developing plant organs. Science. 168 (3938), 1471-1474 (1970).
  3. Damblon, F. Sputtering, a new method of coating pollen grains in scanning electron microscopy. Grana. 15 (3), 137-144 (1975).
  4. Everhart, T. E., Thornley, R. F. M. Wide-band detector for micro-microampere low-energy electron currents. J. Sci. Instrum. 37 (7), 37246-37248 (1960).
  5. Collins, S. P., et al. Advantages of environmental scanning electron microscopy in studies of microorganisms. Microsc. Res. Techniq. 25 (5-6), 398-405 (1993).
  6. Fannes, W., Vanhove, M. P. M., Huyse, T., Paladini, G. A scanning electron microscope technique for studying the sclerites of Cichlidogyrus. Parasitol. Res. 114 (5), 2031-2034 (2015).
  7. Erbar, C., Leins, P. Portioned pollen release and the syndromes of secondary pollen presentation in the Campanulales-Asterales complex. Flora. 190 (4), 323-338 (1995).
  8. Jansen, S., Smets, E., Baas, P. Vestures in woody plants: a review. IAWA Journal. 19 (4), 347-382 (1998).
  9. Bortolin Costa, M. F., et al. Stigma diversity in tropical legumes with considerations on stigma classification. Bot. Rev. 80 (1), 1-29 (2014).
  10. Almeida, O. J. G., Cota-Sánchez, J. H., Paoli, A. A. S. The systematic significance of floral morphology, nectaries, and nectar concentration in epiphytic cacti of tribes Hylocereeae and Rhipsalideae (Cactaceae). Perspect. Plant Ecol. 15 (5), 255-268 (2013).
  11. Konarska, A. Comparison of the structure of floral nectaries in two Euonymus L. species (Celastraceae). Protoplasma. 252 (3), 901-910 (2015).
  12. Giuliani, C., Maleci Bini, L. Insight into the structure and chemistry of glandular trichomes of Labiatae, with emphasis on subfamily Lamioideae. Plant Syst. Evol. 276 (3-4), 199-208 (2008).
  13. Li, K., Zheng, B., Wang, Y., Zhou, L. L.Breeding system and pollination biology of Paeonia delavayi (Paeoniaceae), an endangered plant in the Southwest of China. Pak. J. Bot. 46 (5), 1631-1642 (2014).
  14. García, L., Rivero, M., Droppelmann, F. Descripción morfológica y viabilidad del polen de Nothofagus nervosa (Nothofagaceae). Bosque. 36 (3), 487-496 (2015).
  15. Prenner, G., Klitgaard, B. B. Towards unlocking the deep nodes of Leguminosae: floral development and morphology of the enigmatic Duparquetia orchidacea (Leguminosae, Caesalpinioideae). Am. J. Bot. 95 (11), 1349-1365 (2008).
  16. Ratnayake, K., Joyce, D. C., Webb, R. I. A convenient sample preparation protocol for scanning electron microscope examination of xylem-occluding bacterial biofilm on cut flowers and foliage. Sci. Hortic-Amsterdam. 140 (1), 12-18 (2012).
  17. Çolak, G., Celalettin Baykul, M., Gürler, R., Çatak, E., Caner, N. Investigation of the effects of aluminium stress on some macro and micro-nutrient contents of the seedlings of Lycopersicon esculentum Mill. by using scanning electron microscope. Pak. J. Bot. 46 (1), 147-160 (2014).
  18. Arafa, S. Z. Scanning electron microscope observations on the monogenean parasite Paraquadriacanthus nasalis from the nasal cavities of the freshwater fish Clarias gariepinus in Egypt with a note on some surface features of its microhabitat. Parasitol. Res. 110 (5), 1687-1693 (2012).
  19. Uppalapatia, S. R., Kerwinb, J. L., Fujitac, Y. Epifluorescence and scanning electron microscopy of host-pathogen interactions between Pythium porphyrae (Peronosporales, Oomycota)and Porphyra yezoensis (Bangiales, Rhodophyta). Bot. Mar. 44 (2), 139-145 (2001).
  20. Meaney, M., Haughey, S., Brennan, G. P., Fairweather, I. A scanning electron microscope study on the route of entry of clorsulon into the liver fluke, Fasciola hepatica. Parasitol. Res. 95 (2), 117-128 (2005).
  21. Sundarasekar, J., Sahgal, G., Subramaniam, S. Anti-candida activity by Hymenocallis littoralis extracts for opportunistic oral and genital infection Candida albicans. Bangladesh J. Pharmacol. 7 (3), 211-216 (2012).
  22. Benhamou, N., Rey, P., Picard, K., Tirilly, Y. Ultrastructural and cytochemical aspects of the interaction between the mycoparasite Pythium oligandrum and soilborne plant pathogens. Phytopathology. 89 (6), 506-517 (1999).
  23. Singh, A., et al. First evidence of putrescine involvement in mitigating the floral malformation in mangoes: A scanning electron microscope study. Protoplasma. 251 (5), 1255-1261 (2014).
  24. Xiang, C., et al. Fine mapping of a palea defective 1 (pd1), a locus associated with palea and stamen development in rice. Plant Cell Rep. 34 (12), 2151-2159 (2015).
  25. Mendoza, L., Hernandez, F., Ajello, L. Life cycle of the human and animal oomycete pathogen Pythium insidiosum. J. Clin. Microbiol. 31 (11), 2967-2973 (1993).
  26. Bello, M. A., Rudall, P. J., González, F., Fernández, J. L. Floral morphology and development in Aragoa (Plantaginaceae) andrelated members of the order Lamiales. Int. J. Plant Sci. 165 (5), 723-738 (2004).
  27. Bello, M. A., Hawkins, J. A., Rudall, P. J. Floral morphology and development in Quillajaceae and Surianaceae (Fabales), the species-poor relatives of Leguminosae and Polygalaceae. Ann. Bot. 100 (4), 1491-1505 (2007).
  28. Bello, M. A., Hawkins, J. A., Rudall, P. J. Floral ontogeny in Polygalaceae and its bearing on the homologies of keeled flowers in Fabales. Int. J. Plant Sci. 171 (5), 482-498 (2010).
  29. Bello, M. A., Alvarez, I., Torices, R., Fuertes-Aguilar, J. Floral development and evolution of capitulum structure in Anacyclus (Anthemideae, Asteraceae). Ann. Bot. 112 (8), 1597-1612 (2013).
  30. Bello, M. A., Martínez-Asperilla, A., Fuertes-Aguilar, J. Floral development of Lavatera trimestris and Malva hispanica reveals the nature of the epicalyx in the Malva generic alliance. Bot. J. Linn. Soc. 181 (1), 84-98 (2016).
  31. Calonge, F. D., Martínez, A. J., Falcó, I., Samper, L. E. Phellorinia herculanea f. stellata f. nova encontrada en España. Bol. Soc. Micol.Madrid. 35 (1), 65-70 (2011).
  32. Liu, Y., et al. Deciphering microbial landscapes of fish eggs to mitigate emerging diseases. ISME J. 8 (10), 2002-2014 (2014).
  33. Sandoval-Sierra, J. V., Diéguez-Uribeondo, J. A comprehensive protocol for improving the description of Saprolegniales (Oomycota): two practical examples (Saprolegnia aenigmatica sp. nov. and Saprolegnia racemosa sp. nov.). PLOS one. , (2015).
  34. Endress, P. K. Zur vergleichenden Entwicklungsmorphologie, Embryologie und Systematik bei Laurales. Bot. Jahrb. Syst. 92 (2), 331-428 (1972).
  35. Tucker, S. Floral development in Saururus cernuus (Saururaceae):1. Floral initiation and stamen development. Am. J. Bot. 62 (3), 993-1005 (1975).
  36. Endress, P. K., Matthews, M. L. Progress and problems in the assessment of flower morphology in higher-level systematics. Plant Syst. Evol. 298 (2), 257-276 (2012).
  37. Beakes, G. W., Glockling, S. L., Sekimoto, S. The evolutionary phylogeny of the oomycete "fungi&#34. Protoplasma. 249 (1), 3-19 (2012).
  38. Romansic, J. M., et al. Effects of the pathogenic water mold Saprolegnia ferax on survival of amphibian larvae. Dis. Aquat. Organ. 83 (3), 187-193 (2009).
  39. van West, P. Saprolegnia parasitica, an oomycete pathogen with a fishy appetite: new challengues for an old problem. Mycologist. 20 (3), 99-104 (2006).
  40. Johansen, D. A. . Plant microtechnique. , (1940).
  41. Unestam, T. Studies on the crayfish plague fungus Aphanomyces astaci. Some factors affecting growth in vitro. Physiol. Plantarum. 18 (2), 483-505 (1965).
  42. Cerenius, L., Söderhäll, K. Repeated zoospore emergence from isolated spore cysts of Aphanomyces astaci. Exp. Mycol. 8 (4), 370-377 (1984).
  43. Diéguez-Uribeondo, J., Cerenius, L., Söderhäll, K. Repeated zoospore emergence in Saprolegnia parasitica. Mycol. Res. 98 (7), 810-815 (1994).
  44. Söderhäll, K., Svensson, E., Unestam, T. Chitinase and protease activities in germinating zoospore cysts of a parasitic fungus, Aphanomyces astaci, Oomycetes. Mycopathologia. 64 (1), 9-11 (1978).
  45. Echlin, P. . Handbook of sample preparation for scanning electron microscopy and X-Ray Microanalysis. , (2009).
  46. Osumi, M., et al. Preparation for observation of fine structure of biological specimens by high-resolution SEM. Microscopy. 32 (4), 321-330 (1983).
  47. Rezinciuc, S. . The Saprolegniales morpho-molecular puzzle: an insight into markers identifying specific and subspecific levels in main parasites. , (2013).

Tags

Biologia Vegetal

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved