A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Following the preparation of a 64Cu-modified monoclonal antibody binding to a transgenic murine T cell receptor, T cells are radiolabeled in vivo, analyzed for viability, functionality, labeling stability and apoptosis, and adoptively transferred into mice with an airway delayed-type hypersensitivity reaction for non-invasive imaging by positron emission tomography/computed tomography (PET/CT).
This protocol illustrates the production of 64Cu and the chelator conjugation/radiolabeling of a monoclonal antibody (mAb) followed by murine lymphocyte cell culture and 64Cu-antibody receptor targeting of the cells. In vitro evaluation of the radiolabel and non-invasive in vivo cell tracking in an animal model of an airway delayed-type hypersensitivity reaction (DTHR) by PET/CT are described.
In detail, the conjugation of a mAb with the chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) is shown. Following the production of radioactive 64Cu, radiolabeling of the DOTA-conjugated mAb is described. Next, the expansion of chicken ovalbumin (cOVA)-specific CD4+ interferon (IFN)-γ-producing T helper cells (cOVA-TH1) and the subsequent radiolabeling of the cOVA-TH1 cells are depicted. Various in vitro techniques are presented to evaluate the effects of 64Cu-radiolabeling on the cells, such as the determination of cell viability by trypan blue exclusion, the staining for apoptosis with Annexin V for flow cytometry, and the assessment of functionality by IFN-γ enzyme-linked immunosorbent assay (ELISA). Furthermore, the determination of the radioactive uptake into the cells and the labeling stability are described in detail. This protocol further describes how to perform cell tracking studies in an animal model for an airway DTHR and, therefore, the induction of cOVA-induced acute airway DHTR in BALB/c mice is included. Finally, a robust PET/CT workflow including image acquisition, reconstruction, and analysis is presented.
The 64Cu-antibody receptor targeting approach with subsequent receptor internalization provides high specificity and stability, reduced cellular toxicity, and low efflux rates compared to common PET-tracers for cell labeling, e.g.64Cu-pyruvaldehyde bis(N4-methylthiosemicarbazone) (64Cu-PTSM). Finally, our approach enables non-invasive in vivo cell tracking by PET/CT with an optimal signal-to-background ratio for 48 h. This experimental approach can be transferred to different animal models and cell types with membrane-bound receptors that are internalized.
Non-invasive cell tracking is a versatile tool to monitor cell function, migration and homing in vivo. Recent cell tracking studies have focused on mesenchymal1,2 or bone-marrow derived stem cells3 in the context of regenerative medicine, autologous peripheral white blood cells in inflammation or T lymphocytes in adoptive cell therapies against cancer3,4. The elucidation of the sites of action and the underlying biological principles of cell-based therapies is of tremendous importance. CD8+ cytotoxic T lymphocytes, genetically engineered chimeric antigen receptor (CAR) T cells or tumor-infiltrating lymphocytes (TILs) were widely considered as the gold standard. However, tumor-associated antigen-specific TH1 cells have proven to be an effective alternative treatment option4,5,6,7.
As key players in inflammation, organ-specific autoimmune diseases (e.g., rheumatoid arthritis or bronchial asthma), and cells of high interest in cancer immunotherapy, it is important to characterize the temporal distribution and homing patterns of TH1 cells. Noninvasive in vivo imaging by PET presents a quantitative, highly sensitive method8 to examine cell migration patterns, in vivo homing, and the sites of T cell action and responses during inflammation, allergies, infections or tumor rejection9,10,11.
Clinically, 111In-oxine is used for leukocyte scintigraphy for the discrimination of inflammation and infection12, while 2-deoxy-2-(18F)fluoro-D-glucose (18F-FDG) is commonly used for cell tracking studies by PET3,13. One major disadvantage of this PET tracer, however, is the short half-life of the radionuclide 18F at 109.7 min and the low intracellular stability that impedes imaging at later time points post adoptive cell transfer. For longer term in vivo cell tracking studies by PET, although unstable in the cells, 64Cu-PTSM is frequently used to nonspecifically label cells14,15 with minimized detrimental effects on T cell viability and function16.
This protocol describes a method to further reduce disadvantageous effects on cell viability and function using a T cell receptor (TCR)-specific radiolabeled mAb. First, the production of the radioisotope 64Cu, the conjugation of the mAb KJ1-26 with the chelator DOTA, and the subsequent 64Cu-radiolabeling are shown. In a second step, the isolation and expansion of cOVA-TH1 cells of DO11.10 donor mice and the radiolabeling with 64Cu-loaded DOTA-conjugated mAb KJ1-26 (64Cu-DOTA-KJ1-26) are described in detail. The assessment of uptake values and efflux of radioactivity with a dose calibrator and by γ-counting, respectively, as well as the evaluation of the effects of 64Cu-radiolabeling on cell viability by trypan blue exclusion and functionality with IFN-γ ELISA are presented. For non-invasive in vivo cell tracking, the elicitation of a mouse model of cOVA-induced acute airway DTHR and image acquisition by PET/CT after adoptive cell transfer are described.
Moreover, this labeling approach can be transferred to different disease models, murine T cells with different TCRs or general cells of interest with membrane-bound receptors or expression markers underlying continuous membrane shuttling17.
Safety Precautions: When handling radioactivity, store 64Cu behind 2-inch-thick lead bricks and use respective shielding for all vessels carrying activity. Use appropriate tools to indirectly handle unshielded sources to avoid direct hand contact and minimize exposure to radioactive material. Always wear radiation dosimetry monitoring badges and personal protection equipment and check oneself and the working area for contamination to immediately address it. Discard potentially contaminated personal protection equipment prior to leaving the area where radioactive material is used. Store the entire radioactive waste behind lead shielding until the radioactive 64Cu is decayed (approximately 10 half-lifes = 127 h) before adequate disposal.
1. 64Cu Production
NOTE: The radioisotope 64Cu is produced via the 64Ni(p,n)64Cu nuclear reaction using a PETtrace cyclotron according to a modified protocol of McCarthy et al.18.
2. Antibody Conjugation with DOTA and Subsequent 64 Cu-radiolabeling
NOTE: The chelator DOTA will be linked to functional amino groups of the mAb by N-hydroxysuccinimide (NHS) ester chemistry and the conjugate will be subsequently radiolabeled with 64Cu19.
3. Chicken Ovalbumin-specific TH1 (cOVA-TH1) Cell Isolation and Expansion
NOTE: The culture of TH1 cells is described according to previously published studies16,17.
4. cOVA-TH1 Cell Radiolabeling
NOTE: The 64Cu-DOTA-KJ1-26-mAb will be applied to cultured cOVA-TH1 cells to enable intracellular radioactive labeling.
5. In Vitro Evaluation of the Effect of the Radiolabel on cOVA-TH1 Cells
NOTE: The characterization of the influences of the radiolabel on the TH1 cells is performed via trypan blue exclusion assay for viability, IFN-γ ELISA for functionality assessment and PE-Annexin V staining for the induction of apoptosis16,17. Determination of the intracellular uptake and the efflux of radioactivity is also described below. As comparison, 64Cu-PTSM-labeled cOVA-TH1 cells can also be used.
6. OVA-induced Acute Airway DTHR
NOTE: The migration dynamics and homing patterns of adoptively transferred and radiolabeled cOVA-TH1 cells to the site of inflammation will be visualized and quantified in an animal model for cOVA-induced airway-DTHR16,17.
7. In Vivo Imaging Using PET/CT
NOTE: In vivo imaging of 64Cu-DOTA-KJ1-26-mAb-labeled cOVA-TH1 cells in cOVA-DTHR diseased mice and control littermates demonstrates the specific homing and the migration dynamics of the cOVA-TH1 cells. Therefore, acquire static PET scans and anatomical CT scans sequentially 3, 24 and 48 h post adoptive cell transfer.
8. Image Analysis
Figure 1 summarizes the labeling of cOVA-TH1 cells with the 64Cu-DOTA-KJ1-26-mAb and the experimental design for the in vitro and in vivo studies covered in this protocol.
Figure 1: 64Cu-DOTA-KJ1-26-mAb Labeling Process & Experimental Design. (A) Schematic represe...
This protocol presents a reliable and easy method to stably radiolabel cells for in vivo tracking by PET. Utilizing this method, cOVA-TH1 cells, isolated and expanded in vitro from donor mice, could be radiolabeled with 64Cu-DOTA-KJ1-26-mAb and their homing was tracked to the pulmonary and perithymic LNs as sites of cOVA presentation in a cOVA-induced acute airway DTHR.
The modification of the mAb with the chelator requires fast and efficient working and the use of...
The authors have nothing to disclose.
The authors thank Dr. Julia Mannheim, Walter Ehrlichmann, Ramona Stumm, Funda Cay, Daniel Bukala, Maren Harant as well as Natalie Altmeyer for the support during the experiments and data analysis. This work was supported by the Werner Siemens-Foundation, the DFG through the SFB685 (project B6) and Fortüne (2309-0-0).
Name | Company | Catalog Number | Comments |
HCl, Suprapur | Merck, Darmstadt, Germany | 1.00318 | 64Cu production |
Methanol, Suprapur | Merck, Darmstadt, Germany | 1.06007 | 64Cu production |
Isopropanol, Suprapur | Merck, Darmstadt, Germany | 1.0104 | 64Cu production |
Pt/Ir (90/10) plate | Ögussa | Custom made | 64Cu production |
PEEK chamber | WKL | Custom made | 64Cu production |
64Ni | Chemotrade | 64Cu production | |
Polygram SIL G/UV 254 plate | Macherey-Nagel | 805021 | 64Cu production |
Ion exchange column | BioRad | AG1-X8 | 64Cu production |
Solid state target system for PETtrace | WKL | costum made | 64Cu production |
64Cu work-up module | WKL | costum made | 64Cu production |
Dose calibrator | Capintec | CRC-25R | |
PETtrace cyclotron | General Electric Medical Systems | ||
DOTA-NHS | Macrocyclics | B-280 | DOTA-conjugation |
Anti-cOVA-TCR antibody (KJ1-26) | Isolated from hybridoma cell culture | DOTA-conjugation | |
Na2HPO4 | Sigma-Aldrich | 71633 | DOTA-conjugation |
H+ Chelex 100 | Sigma-Aldrich | C7901 | DOTA-conjugation |
Amicon Ultra-15 filter unit | Merck Millipore | UFC910008 | DOTA-conjugation |
Rotipuran ultrapure water | Carl Roth | HN68.3 | DOTA-conjugation |
Ammonium acetate | Sigma-Aldrich | 32301 | DOTA-conjugation |
PBS | University Tuebingen | DOTA-conjugation | |
Micro Bio-spin P-6 column | Bio-Rad Laboratories | 7326221 | DOTA-conjugation |
Sodium citrate | Sigma-Aldrich | 71497 | DOTA-conjugation |
Cyclone Plus PhosphorImager | Perkin-Elmer | L2250116 | DOTA-conjugation |
DMEM | Merck Millipore | 102568 | ingredient for T cell medium |
FCS | Merck Millipore | S0115/1004B | ingredient for T cell medium |
Sodium pyruvate | Merck Millipore | L0473 | ingredient for T cell medium |
MEM-amino acids | Merck Millipore | K0293 | ingredient for T cell medium |
HEPES | Merck Millipore | L 1613 | ingredient for T cell medium |
Penicillin/Streptomycin | Merck Millipore | A2212 | ingredient for T cell medium |
0.05 mM 2-β-mercaptoethanol | Sigma-Aldrich | M3148 | ingredient for T cell medium |
DO11.10 mice | in-house breeding | TH1 cell culture | |
DPBS | Gibco | 14190144 | TH1 cell culture |
Cell strainer 40 µm | Corning | 352340 | TH1 cell culture |
ACK Lysing Buffer | Lonza | 10-548E | TH1 cell culture |
CD4 MicroBeads, mouse | Miltenyi Biotech | 130-097-145 | TH1 cell culture |
QuadroMACS separator | Miltenyi Biotech | 130-090-976 | TH1 cell culture |
LS column | Miltenyi Biotech | 130-042-401 | TH1 cell culture |
anti-CD4 antibody (Gk1.5) | Isolated from hybridoma cell culture | TH1 cell culture | |
anti-CD8 antibody (5367.2) | Isolated from hybridoma cell culture | TH1 cell culture | |
Anti-rat antibody (MAR18.5) | Isolated from hybridoma cell culture | TH1 cell culture | |
Rabbit complement MA | tebu-Bio | CL3221 | TH1 cell culture |
Anti-IL-4 antibody (11B11) | Isolated from hybridoma cell culture | TH1 cell culture | |
cOVA 323-339-peptide | EMC-micro-collections | Custom order | TH1 cell culture |
CPG1668-oligonucleotides | Eurofins MWG Operon | Custom order | TH1 cell culture |
IL-2 | Novartis | 65483-116-07 | TH1 cell culture |
96-well plates | Greiner | 655180 | TH1 cell culture |
24-well plates | Greiner | 662160 | TH1 cell culture |
cell culture flask | Greiner | 660175 | TH1 cell culture |
48-well plates | Greiner | 677 180 | cell labeling |
Gammacell 1000 | Best Theratronics | via inquiry | |
Gulmay RT225 | Gulmay | via inquiry | |
Trypan blue | Merck Millipore | L6323 | in vitro evaluation |
Mouse IFN-γ ELISA | BD Biosciences | 558258 | in vitro evaluation |
PE Annexin V Apoptosis Detection Kit | BD Biosciences | 559763 | in vitro evaluation |
Tube 5 mL | Sarstedt | 55.476 | in vitro evaluation |
Round-bottom tubes | BD Biosciences | 352008 | in vitro evaluation |
Wizard γ-counter | Perkin-Elmer | 2480-0010 | in vitro evaluation |
ELISA Reader MultiscanEX | Thermo Fisher Scientific | 51118177 | in vitro evaluation |
Microscope | Leica | via inquiry | in vitro evaluation |
BD LSRII | BD Biosciences | via inquiry | in vitroevaluation |
BALB/c mice | Charles River | 028 | in vivo cell trafficking |
Aluminum gel | Serva Electrophoresis | 12261.01 | in vivo cell trafficking |
Xylazine | Bayer HealthCare | Ordered via University hospital | in vivo cell trafficking |
Ketamine | Ratiopharm | Ordered via University hospital | in vivo cell trafficking |
Isoflurane | CP-Pharma | Ordered via University hospital | in vivo cell trafficking |
30 G needle | BD Biosciences | 304000 | in vivo cell trafficking |
Syringe | BD Biosciences | 11612491 | in vivo cell trafficking |
Capillaries 10 µL | VWR | 612-2439 | |
Inveon PET scanner | Siemens Healthineers | no longer available | in vivo cell trafficking, alternative companies: Bruker, Mediso |
Inveon SPECT/CT scanner | Siemens Healthineers | no longer available | in vivo cell trafficking |
Inveon Research Workplace | Siemens Healthineers | image analysis, alternative software: Pmod |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved