A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
This article describes a behavioral assay that uses male mating drive in Drosophila melanogaster to study motivation. Using this method, researchers can utilize advanced fly neurogenetic techniques to uncover the genetic, molecular, and cellular mechanisms that underlie this motivation.
Despite decades of investigation, the neuronal and molecular bases of motivational states remain mysterious. We have recently developed a novel, reductionist, and scalable system for in-depth investigation of motivation using the mating drive of male Drosophila melanogaster (Drosophila), the methods for which we detail here. The behavioral paradigm centers on the finding that male mating drive decreases alongside fertility over the course of repeated copulations and recovers over ~3 d. In this system, the powerful neurogenetic tools available in the fly converge with the genetic accessibility and putative wiring diagram available for sexual behavior. This convergence allows rapid isolation and interrogation of small neuronal populations with specific motivational functions. Here we detail the design and execution of the satiety assay that is used to measure and alter courtship motivation in the male fly. Using this assay, we also demonstrate that low male mating drive can be overcome by stimulating dopaminergic neurons. The satiety assay is simple, affordable, and robust to influences of genetic background. We expect the satiety assay to generate many new insights into the neurobiology of motivational states.
Work in Drosophila has provided deep and pioneering insight into many biological phenomena, including the nature of the gene1, principles of embryonic development2, circadian rhythms3, and the development and wiring of the nervous system4,5,6. Motivation remains far less well understood than these phenomena, perhaps because of the limitations on the systems that have been studied thus far. Motivation in the fly is primarily studied in the context of hunger, which presents many challenges due to their vanishingly small food intake per feeding bout and exoskeleton which precludes overt signs of fat deposition. Consequently, there is a need to expand the systems used to study motivation in the fly.
We describe a behavioral framework for the study of mating drive in Drosophila. This system takes advantage of the neurogenetic tools in the fly as well as the accessibility7,8,9,10,11,12 and the putative connectome of its sexually dimorphic circuitry8,13. In addition, much of the innate14,15,16,17,18,19,20,21 and learned22,23,24 sensory-motor circuitry controlling courtship has been worked out in detail, providing a rare opportunity to locate the exact circuit node upon which motivation impinges. We recently reported that, in the fly, as in humans, dopamine levels are central to mating drive25,26,27. We have gained genetic access to the relevant dopamine-producing and receiving neurons in the fly, facilitating detailed molecular- and circuit-level analyses of this conserved phenomenon using the assays we describe here25.
We add to the behavioral assays in Zhang et al.25 a new flat behavioral arena that allows video scoring, which we call a 2-dimensional (2-D) satiety assay, an important improvement over previous methods. Consequently, the new assay is more scalable and quantifiable, and therefore more suitable for genetic screens of genes and neurons involved in motivation. We use this new assay, together with courtship assays and neurogenetic manipulations, to demonstrate how to measure and alter mating drive in the fly.
Access restricted. Please log in or start a trial to view this content.
NOTE: This protocol describes the preparation (Sections 1 - 3), execution (Section 4), and analysis (Section 4) of 2-D satiety assays. Then, using dopaminergic stimulation as an example, Section 5 shows how to combine thermogenetic stimulation with 2-D satiety assays to induce hypersexuality. Section 6 describes 3 ways to verify the results of 2-D satiety assays. Finally, Section 7 shows how to measure the recovery of mating drive in male flies.
1. Fabricating 8- and 32-chamber Behavioral Arenas
NOTE: Each behavioral arena consists of several layers of laser-cut plastic sheets held together by hex screws and thumb nuts at each of the four corners (Figure 1A).
2. Food Preparation for 2-D Satiety Assay
NOTE: Because a 2-D satiety assay spans 4.5 h, fly food is used in the arena to provide nutrition and water. This protocol uses, but is not restricted to, the conventional cornmeal-agar fly food.
3. Preparing Virgin Females for Behavioral Assays
NOTE: 2-D satiety assays use large numbers of virgin female flies (~120 - 160 for a full behavioral arena) that are difficult to collect using standard methods. This section describes an alternative approach using the hs-hid transgene on the Y chromosome28, which has been used successfully in courtship assays25,29. The stock used to generate white-eyed virgin females has the genotype w1118(X)/hs-hid(Y);+/+;+/+ (Bloomington stock number 24638).
4. Performing and Scoring 2-D Satiety Assays
NOTE: It is important to control the age of the male flies as mating drive changes with age. This protocol uses males that are 3 - 4 d old25.
5. Using Thermogenetic Manipulation to Reverse Satiety in 2-D Satiety Assays
NOTE: This protocol tests whether thermogenetic stimulation of a defined neuronal population can overcome satiety. The experimental flies express the heat-sensitive cation channel TrpA1 in defined populations of neurons (UAS-TrpA1). The steps below apply to the stimulation of dopaminergic neurons (TH-Gal4), which have been shown to promote mating drive25. These steps can be used in conjunction with other neuronal drivers to discover other populations that promote mating drive.
6. Using Courtship and Locomotion to Verify Satiety
NOTE: This section describes 3 optional methods that can be used to verify the results of 2-D satiety assays. They are not required for every assay.
7. Recovering Mating Drive after 2-D Satiety Assay
Access restricted. Please log in or start a trial to view this content.
To characterize Drosophila mating drive, 3-day-old, WT Canton-S males were tested in a 2-D satiety assay. Over the course of the assay (4.5 h), males mate an average of 4.8 ±0.3 (mean ±standard error of mean, SEM) times. Matings initiate mostly in the first 2 h (78%) (Figure 6A, 6B) and become less frequent as the assay progresses (Figure 6A, 6B). This decrease is not due to the lack of mating partners (74% females remain unmated throug...
Access restricted. Please log in or start a trial to view this content.
Motivational states can be satiated, maintained, and recovered34. We present a 2-D satiety assay that quickly and robustly measures all of these aspects of mating drive in the fly. This assay opens up the possibility of using advanced fly genetic manipulations to study the molecular and circuit components of a motivated behavior.
The satiety assay relies on the male's ability to successfully court and copulate, and to terminate copulations at the appropriate time. T...
Access restricted. Please log in or start a trial to view this content.
The authors have nothing to disclose.
The authors thank Mike Crickmore, Dragana Rogulja, and Michelle Frank for comments on the manuscript. Pavel Gorelik provided technical support for manufacturing the behavioral arenas. This work was conducted in Mike Crickmore's lab and is also supported by the Whitehall Foundation (Principal Investigator: Dragana Rogulja). S.X.Z. is a Stuart H.Q. and Victoria Quan Fellow at Harvard Medical School.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
1/16 inch clear acrylic | McMaster-Carr | 8589K12 | Used to make arenas; see Supplemental Material 1 for designs. |
1/8 inch clear acrylic | McMaster-Carr | 8589K42 | Used to make arenas; see Supplemental Material 1 for designs. |
3/16 inch clear acrylic | McMaster-Carr | 8560K219 | Used to make arenas; see Supplemental Material 1 for designs. |
1/32 inch black delrin | McMaster-Carr | 8575K132 | Used to make arenas; see Supplemental Material 1 for designs. |
Hex screws, 1 inch long (50x) | McMaster-Carr | 92314A115 | Used to make arenas. Can be replaced by 3/4 inch screws (92314A113, McMaster-Carr) for 32-chamber arenas. |
Thumb nuts (25x) | McMaster-Carr | 92741A100 | Used to make arenas. Can be replaced by regular hex nuts (90480A005, McMaster-Carr). |
Camcorder | Canon | Vixia HF R700 | Can be replaced by any consumer comcorder. |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved