JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Biology

El análisis de la superficie celular Adhesión Remodeling en respuesta a la tensión mecánica usando perlas magnéticas

Published: March 8th, 2017

DOI:

10.3791/55330

1Institute for Advanced Biosciences, Centre de recherche UGA - INSERM U1209 - CNRS UMR
* These authors contributed equally

adherencias de la superficie celular son fundamentales en mechanotransduction, ya que transmiten la tensión mecánica e inician las vías de señalización implicadas en la homeostasis del tejido y el desarrollo. A continuación, presentamos un protocolo para la disección de las vías bioquímicas que se activan en respuesta a la tensión, utilizando microperlas magnéticas recubiertas con ligando y aplicación de la fuerza a los receptores de adhesión.

mechanosensitive complejos de adhesión que permiten a las células detectar las propiedades mecánicas de su entorno. Estudios recientes han identificado ambas moléculas de detección de la fuerza en los sitios de adhesión, y factores de transcripción dependiente de la fuerza que regulan la expresión de genes específicos de linaje y conducen salidas fenotípicas. Sin embargo, las redes de señalización de conversión de la tensión mecánica en las vías bioquímicas han sido difícil de alcanzar. Para explorar las vías de señalización dedicadas a la tensión mecánica aplicada a receptor de superficie celular, microperlas superparamagnéticas se pueden utilizar. Aquí se presenta un protocolo para el uso de perlas magnéticas para aplicar fuerzas a las proteínas de adhesión de la superficie celular. Utilizando este enfoque, es posible investigar no sólo las vías de señalización citoplásmica dependiente de la fuerza por diversos enfoques bioquímicos, sino también el remodelado adhesión por aislamiento magnético de los complejos de adhesión unidos a las perlas de ligando-revestido. Este protocolo incluye la preparación de ligando-coperlas superparamagnéticas ATED, y la aplicación de fuerzas de tracción definen seguido de análisis bioquímicos. Además, ofrecemos una muestra representativa de los datos que demuestran que la tensión aplicada a la adhesión a base de integrina desencadena remodelación adherencia y altera la fosforilación de la proteína tirosina.

En metazoos, la tensión mecánica dirige el desarrollo de tejido y la homeostasis a través de la regulación de una gran variedad de procesos celulares tales como la proliferación, la diferenciación y la supervivencia 1, 2. tensión mecánica puede surgir de la matriz extracelular o puede ser generada por las células adherentes, que muestra su ambiente extracelular a través de la maquinaria contráctil actomiosina que tira en la matriz extracelular y las sondas de su rigidez a través de moléculas de tensión y minúsculas. En respuesta a la tensión, las proteínas de adhesión mechanosensitive experimentan cambios con....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Ligando Conjugación con perlas magnéticas

Nota: la conjugación del ligando se lleva a cabo usando perlas activadas con tosilo superparamagnéticas con un 2,8 m de diámetro (concentración de la solución de stock 10 8 cuentas / ml, 30 mg de perlas / ml). El siguiente protocolo se basa en muestras de aproximadamente 2 x 10 5 células, que corresponden a las células MRC-5 cultivadas a 80% de confluencia en una placa de cultivo de tejidos de 60 mm. Ajuste el volumen .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

El esquema de la técnica se ilustra en la Figura 1a. Después de la conjugación ligando, perlas magnéticas se incubaron con las células durante 20 min, y a continuación, un imán permanente se utiliza para aplicar fuerzas de tracción de alrededor de 30 a 40 pN para diversas cantidades de tiempo. La Figura 1b muestra 2.8 micras perlas magnéticas recubiertas con FN con destino a los receptores de adhesión celular MRC5.

Los pasos de lavado de perlas sup.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

El método descrito aquí constituye un enfoque directo para aplicar tensión a los receptores de adhesión de la superficie celular y permitir su posterior purificación. Sin embargo, algunas medidas son fundamentales para llevar a cabo la purificación de adhesión eficiente y la optimización potencial se puede hacer en función de los receptores de adhesión específicas. Presentamos los posibles problemas que el usuario pueda encontrar a continuación.

Se utilizó perlas magnéticas de .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

CG es apoyado por becas de la Agencia Nacional de Investigación (ANR-13-JSV1-0008), procedentes del Séptimo Programa Marco de la Unión Europea (Marie Curie Integración Carrera n˚8304162) y de Consejo Europeo de Investigación (CEI) a través del horizonte de la Unión Europea 2020 programa de innovación (CEI para n˚639300 subvención) la investigación y.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
Neodymium magnets (on the upper face of 60 mm dish)K&J Magnetics, IncDX88-N52grade N52 dimension: 1 1/2" dia. x 1/2" thick
Neodymium magnets (on the lower face of 60 mm dish)K&J Magnetics, IncD84PC-BLKgrade N42 dimension: 1/2" dia. x 1/4" thick Black Plastic Coated 
Dynabeads M280 TosylactivatedThermofisher14203superparamagnetic beads 
DynaMag-2 MagnetThermofisher12321D
Fibronectin Sigma-AldrichF1141-5MGFibronectin from bovine plasma
Poly-D-LysineSigma-AldrichP7280-5MG
Apo-TransferrinSigma-AldrichT1428-50MGBovine Apo-Transferrin
Bovine serum albuminSigma-AldrichA7906-500G
DMEM high glucose, GlutaMAX supplement, pyruvate Life Technologies31966-021DMEM+GlutaMAX-I 500 ml 
60*15 mm culture dishFalcon353004

  1. Discher, D. E., Janmey, P., Wang, Y. -. L. . Tissue cells feel and respond to the stiffness of their substrate. 310 (5751), 1139-1143 (2005).
  2. DuFort, C. C., Paszek, M. J., Weaver, V. M. Balancing forces: architectural control of mechanotransduction. Nat Rev Mol Cell Biol. 12 (5), 308-319 (2011).
  3. Guilluy, C., et al. The Rho GEFs LARG and GEF-H1 regulate the mechanical response to force on integrins. Nat Cell Biol. 13 (6), 722-727 (2011).
  4. Matthews, B. D., Overby, D. R., Mannix, R., Ingber, D. E. Cellular adaptation to mechanical stress: role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels. J Cell Sci. 119 (3), 508-518 (2006).
  5. Zhao, X. -. H., et al. Force activates smooth muscle alpha-actin promoter activity through the Rho signaling pathway. J Cell Sci. 120 (Pt 10), 1801-1809 (2007).
  6. Engler, A. J., Sen, S., Sweeney, H. L., Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell. 126 (4), 677-689 (2006).
  7. Austen, K., Kluger, C., Freikamp, A., Chrostek-Grashoff, A., Grashoff, C. Generation and analysis of biosensors to measure mechanical forces within cells. Meth Mol Biol. 1066, 169-184 (2013).
  8. Grashoff, C., et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature. 466 (7303), 263-266 (2010).
  9. Pelham, R. J., Wang, Y. l. . Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci USA. 94 (25), 13661-13665 (1997).
  10. Choquet, D., Felsenfeld, D. P., Sheetz, M. P. Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell. 88 (1), 39-48 (1997).
  11. Chaudhuri, O., Parekh, S. H., Lam, W. A., Fletcher, D. A. Combined atomic force microscopy and side-view optical imaging for mechanical studies of cells. Nat Meth. 6 (5), 383-387 (2009).
  12. Bays, J. L., et al. Vinculin phosphorylation differentially regulates mechanotransduction at cell-cell and cell-matrix adhesions. J Cell Biol. 205 (2), 251-263 (2014).
  13. Collins, C., et al. Localized tensional forces on PECAM-1 elicit a global mechanotransduction response via the integrin-RhoA pathway. Curr Biol. 22 (22), 2087-2094 (2012).
  14. Gordon, W. R., et al. Mechanical Allostery: Evidence for a Force Requirement in the Proteolytic Activation of Notch. Dev Cell. 33 (6), 729-736 (2015).
  15. Lessey-Morillon, E. C., et al. The RhoA guanine nucleotide exchange factor, LARG, mediates ICAM-1-dependent mechanotransduction in endothelial cells to stimulate transendothelial migration. J Immunol. 192 (7), 3390-3398 (2014).
  16. Osborne, L. D., et al. TGF-β regulates LARG and GEF-H1 during EMT to affect stiffening response to force and cell invasion. Mol Biol Cell. 25 (22), 3528-3540 (2014).
  17. Scott, D. W., Tolbert, C. E., Burridge, K. Tension on JAM-A activates RhoA via GEF-H1 and p115 RhoGEF. Mol Biol Cell. 27 (9), 1420-1430 (2016).
  18. Glogauer, M., Ferrier, J., McCulloch, C. A. Magnetic fields applied to collagen-coated ferric oxide beads induce stretch-activated Ca2+ flux in fibroblasts. Am J Physiol - Cell Physiol. 269 (5), C1093-C1104 (1995).
  19. Glogauer, M., et al. Calcium ions and tyrosine phosphorylation interact coordinately with actin to regulate cytoprotective responses to stretching. J Cell Sci. 110 (Pt 1), 11-21 (1997).
  20. Kuo, J. -. C., Han, X., Hsiao, C. -. T., Yates, J. R., Waterman, C. M. Analysis of the myosin-II-responsive focal adhesion proteome reveals a role for β-Pix in negative regulation of focal adhesion maturation. Nat Cell Biol. 13 (4), 383-393 (2011).
  21. Schiller, H. B., et al. β1- and αv-class integrins cooperate to regulate myosin II during rigidity sensing of fibronectin-based microenvironments. Nat Cell Biol. 15 (6), 625-636 (2013).
  22. Guilluy, C., et al. Isolated nuclei adapt to force and reveal a mechanotransduction pathway in the nucleus. Nat Cell Biol. 16 (4), 376-381 (2014).
  23. Plopper, G. E., McNamee, H. P., Dike, L. E., Bojanowski, K., Ingber, D. E. Convergence of integrin and growth factor receptor signaling pathways within the focal adhesion complex. Mol Biol Cell. 6 (10), 1349-1365 (1995).
  24. Roca-Cusachs, P., Gauthier, N. C., Del Rio, ., A, M. P., Sheetz, Clustering of alpha(5)beta(1) integrins determines adhesion strength whereas alpha(v)beta(3) and talin enable mechanotransduction. Proc Natl Acad Sci USA. 106 (38), 16245-16250 (2009).
  25. Ajeian, J. N., et al. Proteomic analysis of integrin-associated complexes from mesenchymal stem cells. Proteomics Clin Appl. 10 (1), 51-57 (2016).
  26. Horton, E. R., Astudillo, P., Humphries, M. J., Humphries, J. D. Mechanosensitivity of integrin adhesion complexes: Role of the consensus adhesome. Exp Cell Res. , (2015).
  27. Jones, M. C., et al. Isolation of integrin-based adhesion complexes. Curr Protoc Cell Biol. 66, 9.8.1-9.8.15 (2015).
  28. Ng, D. H. J., Humphries, J. D., Byron, A., Millon-Frémillon, A., Humphries, M. J. Microtubule-dependent modulation of adhesion complex composition. PloS One. 9 (12), e115213 (2014).
  29. Byron, A., Humphries, J. D., Bass, M. D., Knight, D., Humphries, M. J. Proteomic analysis of integrin adhesion complexes. Sci Sign. 4 (167), pt2 (2011).
  30. Byron, A., Humphries, J. D., Craig, S. E., Knight, D., Humphries, M. J. Proteomic analysis of α4β1 integrin adhesion complexes reveals α-subunit-dependent protein recruitment. Proteomics. 12 (13), 2107-2114 (2012).
  31. Marjoram, R. J., Guilluy, C., Burridge, K. Using magnets and magnetic beads to dissect signaling pathways activated by mechanical tension applied to cells. Methods. , (2015).
  32. Pasapera, A. M., Schneider, I. C., Rericha, E., Schlaepfer, D. D., Waterman, C. M. Myosin II activity regulates vinculin recruitment to focal adhesions through FAK-mediated paxillin phosphorylation. J Cell Biol. 188 (6), 877-890 (2010).
  33. Sawada, Y., Sheetz, M. P. Force transduction by Triton cytoskeletons. J Cell Biol. 156 (4), 609-615 (2002).
  34. Grinnell, F., Geiger, B. Interaction of fibronectin-coated beads with attached and spread fibroblasts. Binding, phagocytosis, and cytoskeletal reorganization. Exp Cell Res. 162 (2), 449-461 (1986).
  35. Schroeder, F., Kinden, D. A. Measurement of phagocytosis using fluorescent latex beads. J Biochem Biophys Meth. 8 (1), 15-27 (1983).
  36. Hoffman, B. D., Grashoff, C., Schwartz, M. A. Dynamic molecular processes mediate cellular mechanotransduction. Nature. 475 (7356), 316-323 (2011).
  37. Seo, D., et al. A Mechanogenetic Toolkit for Interrogating Cell Signaling in Space and Time. Cell. 165 (6), 1507-1518 (2016).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved