A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Here, we describe a complete workflow for the qualitative and quantitative analysis of immune synapses between primary human T cells and antigen-presenting cells. The method is based on imaging flow cytometry, which allows the acquisition and evaluation of several thousand cell images within a relatively short period of time.
The immune synapse is the area of communication between T cells and antigen-presenting cells (APCs). T cells polarize surface receptors and proteins towards the immune synapse to assure a stable binding and signal exchange. Classical confocal, TIRF, or super-resolution microscopy have been used to study the immune synapse. Since these methods require manual image acquisition and time-consuming quantification, the imaging of rare events is challenging. Here, we describe a workflow that enables the morphological analysis of tens of thousands of cells. Immune synapses are induced between primary human T cells in pan-leukocyte preparations and Staphylococcus aureus enterotoxin B (SEB)-loaded Raji cells as APCs. Image acquisition is performed with imaging flow cytometry, also called In-Flow microscopy, which combines features of a flow cytometer and a fluorescence microscope. A complete gating strategy for identifying T cell/APC couples and analyzing the immune synapses is provided. As this workflow allows the analysis of immune synapses in unpurified pan-leukocyte preparations and hence requires only a small volume of blood (i.e., 1 mL), it can be applied to samples from patients. Importantly, several samples can be prepared, measured, and analyzed in parallel.
T cells are major regulators of the adaptive immune system and are activated through antigenic peptides that are presented in the context of major histocompatibility complexes (MHC). Full T-cell activation requires two signals, the competence signal via the antigen-specific T-cell receptor (TCR)/CD3 complex and the costimulatory signal via accessory receptors. Both signals are generated through the direct interaction of T cells with antigen-presenting cells (APCs). Mature APCs provide the competence signal for T-cell activation through MHC-peptide complexes, and they express costimulatory ligands (e.g., CD80 or CD86) to assure the progression of T-cell activation1. One important function of costimulation is the rearrangement of the actin cytoskeleton2,3,4. The cortical F-actin is relatively static in resting T cells. T-cell stimulation through antigen-bearing APCs leads to a profound rearrangement of the actin cytoskeleton. Actin dynamics (i.e., fast actin polymerization/depolymerization circles) enable the T cells to create forces that are used to transport proteins or organelles, for example. Moreover, the actin cytoskeleton is important for developing a special contact zone between T cells and APCs, called the immune synapse. Due to the importance of the actin cytoskeleton to the immune synapse, it has become essential to develop methods to quantify changes in the actin cytoskeleton of T cells5,6,7,8,9.
By means of actin cytoskeletal aid, surface receptors and signaling proteins are segregated in supramolecular activation clusters (SMACs) within the immune synapse. The stability of the immune synapse is assured by the binding of receptors to F-actin bundles that increase the elasticity of the actin cytoskeleton. Immune synapse formation has been shown to be critical for the generation of the adaptive immune responses. The detrimental effects of a defective immune synapse formation in vivo were first realized in patients suffering from Wiskott Aldrich Syndrome (WAS), a disease in which actin polymerization and, concomitantly, immune synapse formation are disturbed10. WAS patients can suffer from eczema, severe recurrent infections, autoimmune diseases, and melanomas. Despite this finding, it is currently not known whether immune synapse formation differs in the T cells of healthy individuals and patients suffering from immune defects or autoimmune diseases.
Fluorescence microscopy, including confocal, TIRF, and super-resolution microscopy, were used to uncover the architecture of the immune synapse11,12,13,14. The high resolution of these systems and the possibility of performing live-cell imaging enables the collection of exact, spatio-temporal information about the actin cytoskeleton and surface or intracellular proteins in the immune synapse. Many results, however, are based on the analysis of only a few tens of T cells. Moreover, T cells must be purified for these types of fluorescence microscopy. However, for many research questions, the use of unpurified cells rather than the highest-possible resolution is of the utmost importance. This is relevant if T cells from patients are analyzed, since the amount of donated blood is limited and there might be the need to process many samples in parallel.
We established microscopic methods that allow the analysis of the actin cytoskeleton in the immune synapse in the human system15,16,17. These methods are based on imaging flow cytometry, also called In-Flow microscopy18. As a hybrid between multispectral flow cytometry and fluorescence microscopy, imaging flow cytometry has its strengths in analyzing morphological parameters and protein localization in heterogeneous cell populations, such as pan-leukocytes from the peripheral blood. We introduced a methodology that enables us to quantify F-actin in T-cell/APC conjugates of human T cells from whole-blood samples, without the need of time-consuming and costly purification steps17. The technique presented here comprises the whole workflow, from getting the blood sample to the quantification of F-actin in the immune synapse.
Access restricted. Please log in or start a trial to view this content.
1. Preparation of Pan-leukocytes
2. Loading of Raji Cells with SEB
3. Induction of Immune Synapses and Staining Protocol
4. Image Acquisition Using a Flow Cytometer
NOTE: The following image acquisition procedure and data analysis are based on imaging flow cytometry using software such as imagestream (IS100), INSPIRE, and IDEAS. However, other flow cytometers and analysis software can also be used.
5. Data analysis
Access restricted. Please log in or start a trial to view this content.
A major goal of the method described here is the quantification of protein enrichment (e.g., F-actin) in the immune synapse between surrogate APCs (Raji cells) and T cells in unpurified pan-leukocytes taken from low-volume (1 mL) human blood samples. The screenshot in Figure 1 gives an overview of the critical gating strategy of this method. It shows the image gallery on the left and the analysis area on the right (Figure 1). The image gallery sh...
Access restricted. Please log in or start a trial to view this content.
The workflow presented here enables the quantification of immune synapses between human T cells (ex vivo) and APCs. Notably, erythrocyte-lysed pan-leukocytes were used as T-cell sources, making T-cell purification steps dispensable. The B-cell lymphoma cell line Raji served as surrogate APCs. This bears significant advantages, since it allows comparisons between blood donors of the T-cell side of the immune synapse. Furthermore, autologous DCs are hardly available directly from peripheral human blood. The production of m...
Access restricted. Please log in or start a trial to view this content.
The authors have nothing to disclose.
The work was funded by the German research council (DFG) with grants No. SFB-938-M and SA 393/3-4.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
>Multifuge 3 SR | Heraeus | ||
RPMI 1640 | LifeTechnologies | #11875085 | 500 mL |
FCS | Pan Biotech#3302-P101102 | ||
Polystyrene Round Bottom Tube | Falcon | #352054 | 5 mL |
Kulturflasche | Thermo Scientific | #178883 | |
Dulbecco's Phosphate Buffered Saline | Sigma | D8662 | |
Bovine Serum Albumin | Roth | #8076.3 | |
Saponin | Sigma | S7900 | |
Paraformaldehyde | Sigma Aldrich | #16005 | |
FACS Wash Saponin | PBS 1% BSA 0.15 Saponin | ||
ReaktiosgefaB | Sarstedt | 72.699.002 | 0.5 mL |
Speed Bead | Amnis | #400041 | |
Minishaker MS1 | IKA Works | MS1 | |
Mikrotiterplatte | Greiner Bio One | #650101 | 96U |
Enterotoxin SEB | Sigma Aldrich | S4881 | |
DAPI | Sigma Aldrich | D9542 | 1:3000 |
CD3-PeTxR | Invitrogen | MHCD0317 | 1:30 |
Phalloidin-AF647 | Molecular Probes | A22287 | 1:150 |
IS100 | Amnis | Imaging flow cytometer | |
IDEAS | Amnis | Software | |
INSPIRE | Amnis | Software |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved