A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
This study presents a methodology to prepare 3D, biodegradable, foam-like cell scaffolds based on biocompatible side-chain liquid crystal elastomers (LCEs). Confocal microscopy experiments show that foam-like LCEs allow for cell attachment, proliferation, and the spontaneous alignment of C2C12s myoblasts.
Here, we present a step-by-step preparation of a 3D, biodegradable, foam-like cell scaffold. These scaffolds were prepared by cross-linking star block co-polymers featuring cholesterol units as side-chain pendant groups, resulting in smectic-A (SmA) liquid crystal elastomers (LCEs). Foam-like scaffolds, prepared using metal templates, feature interconnected microchannels, making them suitable as 3D cell culture scaffolds. The combined properties of the regular structure of the metal foam and of the elastomer result in a 3D cell scaffold that promotes not only higher cell proliferation compared to conventional porous templated films, but also better management of mass transport (i.e., nutrients, gases, waste, etc.). The nature of the metal template allows for the easy manipulation of foam shapes (i.e., rolls or films) and for the preparation of scaffolds of different pore sizes for different cell studies while preserving the interconnected porous nature of the template. The etching process does not affect the chemistry of the elastomers, preserving their biocompatible and biodegradable nature. We show that these smectic LCEs, when grown for extensive time periods, enable the study of clinically relevant and complex tissue constructs while promoting the growth and proliferation of cells.
There are several examples of biological and biocompatible synthetic materials designed for application in cell studies and for tissue regeneration aiming at cell attachment and proliferation1,2,3,4,5. There have been a few examples of biocompatible materials, known as liquid crystal elastomers (LCEs), that could respond to external stimuli with anisotropic molecular ordering6,7. LCEs are stimuli-responsive materials that combine the mechanical and elastic properties of elastomers with the optical functionality and molecular ordering of liquid crystals8,9. LCEs can experience changes in shape, mechanical deformation, elastic behavior, and optical properties in response to external stimuli (i.e., heat, stress, light, etc.)10,11,12,13,14,15,16. Earlier studies have shown that liquid crystals (LCs) can sense the growth and orientation of cells4,17. It is possible then to assume that LCEs may be suitable for biologically and medically relevant applications, including cell scaffolding and alignment. We have previously reported the preparation of smectic biocompatible, biodegradable, cast-molded, and thin LCEs films featuring a "Swiss-cheese type" porous morphology6,18. We also prepared nematic biocompatible LCEs with globular morphology as scaffolds for cell growth19,20. Our work was aimed at tuning the mechanical properties of the materials to match those of the tissue of interest21. Also, these studies focus on understanding elastomer-cell interactions, as well as cellular response when the elastomers are subject to external stimuli.
The main challenges were in part to tailor the porosity of the LCEs to allow for cell attachment and permeation through the elastomer matrix and for better mass transport. The porosity of these thin films6 allowed for cell permeation through the bulk of the matrix, but not all pores were fully interconnected or had a more regular (homogeneous) pore size. We then reported on biocompatible nematic LCE elastomers with globular morphologies. These nematic elastomers allowed for the attachment and proliferation of cells, but the pore size ranged only from 10-30 µm, which prevented or limited the use of these elastomers with a wider variety of cell lines19,20.
Previous work by Kung et al. relating to the formation of graphene foams using a "sacrificial" metal template showed that the obtained graphene foam had a very regular porous morphology dictated by the chosen metal template22. This methodology offers full control of porosity and pore size. At the same time, the malleability and flexibility of the metal template allow for the formation of different template shapes prior to foam preparation. Other techniques, such as material leaching23, gas templating24, or electro-spun fibers25,26 also offer the potential for the preparation of porous materials, but they are more time consuming and, in some cases, the pore size is limited to only a few micrometers. Foam-like 3D LCEs prepared using metal templates allow for a higher cell load; an improved proliferation rate; co-culturing; and, last but not least, better mass transport management (i.e., nutrients, gases, and waste) to ensure full tissue development27. Foam-like 3D LCEs also appear to improve cell alignment; this is most likely in relation to the LC pendants sensing cell growth and cell orientation. The presence of LC moieties within the LCE appears to enhance cell alignment with respect to cell location within the LCE scaffold. Cells align within the struts of the LCE, while no clear orientation is observed where the struts join together (junctions)27.
Overall, our LCE cell scaffold platform as a cell support medium offers opportunities to tune the elastomer morphology and elastic properties and to specifically direct the alignment of (individual) cell types to create an ordered, spatial arrangements of cells similar to living systems. Apart from providing a scaffold capable of sustaining and directing long-term cellular growth and proliferation, LCEs also allow for dynamic experiments, where cell orientation and interactions may be modified on the fly.
NOTE: The following steps for the 3D LCE foam-like preparation using the 3-arm star block copolymer are shown in Figure 1. For nuclear magnetic resonance (NMR) characterization, the spectra are recorded in deuterated chloroform (CDCl3) at room temperature on a Bruker DMX 400-MHz instrument and internally referenced residual peaks at 7.26. Fourier transform infrared (FT-IR) spectra are recorded using a Bruker Vector 33 FT-IR spectrometer using attenuated total reflectance mode. For each step of the following protocol, it is important to wear appropriate personal protective clothing (PPE).
1. Synthesis of α-Chloro-ε-caprolactone (Monomer) (According to the Procedure in Jérôme et al.28)
2. Synthesis of α-Three-arm Star Block Copolymer (SBC-αCl) by Ring Opening Copolymerization (Sharma et al.6 and Amsden et al.29)
3. Synthetic Modification of α-Cl-Three Arm SBC to α-N3-Three Arm SBC (SBC-αN3) (According to Sharma et al.6)
4. Synthesis of Cholesteryl 5-Hexynoate (LC Moiety) (According to Sharma et al.6 and Donaldson et al.30)
5. Synthetic Modification of α-N3-Three Arm SBC to α-Cholesteryl-Three Arm SBC (SBC-αCLC) via an Azide-Alkyne Huisgen Cyclo-addition Reaction ("Click" Reaction) to Obtain SBC-Chol (According to Sharma et al.6)
6. Synthesis of 2,2-Bis(1-caprolactone-4-yl)propane (Crosslinker, BCP) (According to Gao et al.27 and Albertsson et al.31)
7. Creation of Porous 3D Elastomer Scaffold Using either Hexamethylene Diisocyanate (HDI) or 2,2-Bis(1-caprolactone-4-yl)propane (BCP)27 as Crosslinkers (According to Gao et al.27)
8. Seeding of Elastomer Scaffold with SH-SY5Y Neuroblastoma Cells and Culture Using Sterile Techniques
9. Microscopic Imaging of Elastomer Construct
This report shows the preparation method of a porous 3D LCE as a scaffold for cell culture using a nickel metal template. The obtained 3D LCE demonstrates a complex interconnected channel network that allows for easy cell infiltration, as well as more suitable mass transport27. It was found that cells are able to fully penetrate the interconnected channel network and are also able to align within the LCE. Here, a metal nickel foam (99% Ni, density of 860 g/cm2...
Liquid crystalline elastomers have recently been studied as biocompatible cell scaffolds due to their stimuli responsiveness. They have been proven to be ideal platforms as cell scaffolds. However, an important factor to keep in mind when preparing and designing a new LCE scaffold is porosity. The incorporation of leachable solids23 or gases does not always result in homogeneous porosity or fully interconnected pores. The use of a metal template that can be etched out not only offers the opportuni...
The authors have nothing to disclose.
The authors would like to thank Kent State University (collaborative research grant and support for the Regenerative Medicine Initiative at Kent State − ReMedIKS) for the financial support of this project.
Name | Company | Catalog Number | Comments |
1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane | Alfa Aesar | L16606 | Silanizing agent |
2-bis(4-hydroxy-cyclohexyl)propane | TCI | B0928 | Reagent |
2-chlorohexanone | Alfa Aesar | A18613 | Reagent |
2-heptanone | Sigma Aldrich | W254401 | Solvent |
2-propanol | Sigma Aldrich | 278475 | Solvent |
3-chloroperbenzoic acid, m-CPBA | Sigma Aldrich | 273031 | Reagent |
4-dimethylaminopyridine | Alfa Aesar | A13016 | Reagent |
4',6-diamidino-2-phenylindole, DAPI | Invitrogen | D1306 | Nuclear Stain |
5-hexynoic acid | Alfa Aesar | B25132-06 | Reagent |
Acetic acid | VWR | 36289 | Solvent |
Acetone | Sigma Aldrich | 34850 | Solvent |
Alcohol 200 proof ACS Grade | VWR | 71001-866 | Reagent |
Benzene | Alfa Aesar | AA33290 | Solvent |
ε-caprolactone | Alfa Aesar | A10299-0E | Reagent |
Chloroform | VWR | BDH1109 | Solvent |
Cholesterol | Sigma Aldrich | C8503 | Reagent |
Chromium(VI) oxide | Sigma Aldrich | 232653 | Reagent |
Copper(I) iodide | Strem Chemicals | 100211-060 | Reagent |
D,L-Lactide | Alfa Aesar | L09026 | Reagent |
Dichloromethane | Sigma Aldrich | 320269 | Solvent |
Diethyl ether | Emd Millipore | EX0190 | Solvent |
N,N-Dimethylformamide | Sigma Aldrich | 270547 | Solvent |
Dulbecco’s modified Eagle medium, DEME | CORNING Cellgo | 10-013 | Cell Media |
Ethanol | Alfa Aesar | 33361 | Solvent |
Formaldehyde | SIGMA Life Science | F8775 | Fixative |
Fetal bovine serum, FBS | HyClone | SH30071.01 | Media Component |
Filter paper, Grade 415, qualitative, crepe | VWR | 28320 | Filtration |
Glycerol | Sigma Aldrich | G5516 | Central node (3-arm) |
Hexamethylene diisocyanate, HDI | Sigma Aldrich | 52649 | Crosslinker |
Iron(III) chloride | Alfa Aesar | 12357 | Etching agent |
Isopropyl alcohol | VWR | BDH1133 | Solvent |
Methanol | Alfa Aesar | L13255 | Solvent |
N,N'-dicyclohexylcarbodiimide | Aldrich | D80002 | Solvent |
N,N-Dimethylformamide | Sigma Aldrich | 270547 | Solvent |
Nickel metal template | American Elements | Ni-860 | Foam template |
Neuroblastomas cells (SH-SY5Y) | ATCC | CRL-2266 | Cell line |
Penicillin streptomycin | Thermo SCIENTIFIC | 15140122 | Antibiotics |
Polyethylene glycol 2000, PEG | Alfa Aesar | B22181 | Reagent |
Sodium azide | VWR | 97064-646 | Reagent |
Sodium bicarbonate | AMRESCO | 865 | Drying salt |
Sodium chloride | BDH | BDH9286 | Drying salt |
Sodium phosphate dibasic heptahydrate | Fisher Scientific | S-374 | Drying salt |
Sodium phosphate monobasic monohydrate | Sigma Aldrich | S9638 | Drying salt |
Sodium sulfate | Sigma Aldrich | 239313 | Drying salt |
Tetrahydrofuran | Alfa Aesar | 41819 | Solvent |
Thiosulfate de sodium | AMRESCO | 393 | Drying salt |
Tin(II) 2-ethylhexanoate | Aldrich | S3252 | Reagent |
Toluene | Alfa Aesar | 22903 | Solvent |
Triethylamine | Sigma Aldrich | 471283 | Reagent |
Trypsin | HyClone | SH30042.01 | Cell Detachment |
Olympus FV1000 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved