JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Developmental Biology

Protocolos para la visualización androgénica, órganos y sus órganos interactivos con inmunotinción en la mosca de la fruta

Published: April 14th, 2017

DOI:

10.3791/55519

1Graduate School of Life and Environmental Sciences, University of Tsukuba, 2Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, 3Faculty of Life and Environmental Sciences, University of Tsukuba
* These authors contributed equally

Se describe un protocolo para la disección, la fijación y la inmunotinción de órganos androgénica en Drosophila larvas y adultos hembras para estudiar la biosíntesis de hormonas esteroideas y su mecanismo de regulación. Además de los órganos androgénica, visualizamos la inervación de los órganos androgénica, así como células diana androgénica, tales como las células madre de línea germinal.

En los organismos multicelulares, un pequeño grupo de células está dotado de una función especializada en su actividad biogénica, la inducción de una respuesta sistémica a crecimiento y reproducción. En los insectos, la glándula larval prothoracic (PG) y las hembras adultas de juego ovario papeles esenciales en la biosíntesis de los principales hormonas esteroides llamados ecdysteroids. Estos órganos ecdysteroidogenic están inervados desde el sistema nervioso, a través del cual la temporización de la biosíntesis se ve afectada por las señales ambientales. Aquí se describe un protocolo para la visualización de órganos ecdysteroidogenic y sus órganos interactivos en larvas y adultos de la mosca de la fruta Drosophila melanogaster, que proporciona un sistema modelo adecuado para el estudio de la biosíntesis de hormonas esteroideas y su mecanismo de regulación. disección hábil nos permite mantener las posiciones de los órganos ecdysteroidogenic y sus órganos interactivos, incluyendo el cerebro, el cordón nervioso ventral, y otros tejidos. La inmunotinción con unantibodies contra enzimas ecdysteroidogenic, junto con las proteínas de fluorescencia transgénicos conducidos por promotores específicos de tejido, están disponibles para marcar las células ecdysteroidogenic. Por otra parte, la inervación de los órganos ecdysteroidogenic también pueden marcarse por anticuerpos específicos o una colección de controladores de GAL4 en diversos tipos de neuronas. Por lo tanto, los órganos ecdysteroidogenic y sus conexiones neuronales pueden ser visualizadas simultáneamente por inmunotinción y técnicas transgénicas. Por último, se describe cómo visualizar las células madre de línea germinal, cuya proliferación y mantenimiento son controlados por ecdysteroids. Este método contribuye a la comprensión global de la biosíntesis de la hormona esteroide y su mecanismo de regulación neuronal.

En los organismos multicelulares, un grupo de células está dotado de una función especializada en su actividad biogénica que es esencial para todo el cuerpo. Para cumplir su cometido, cada tejido u órgano expresa una serie de genes relacionados con sus funciones y se comunica con otros tejidos para orquestar sus actividades en el contexto del desarrollo. Para caracterizar este tipo de funciones celulares especializadas y las interacciones entre órganos, tenemos que especificar un grupo de células junto con otros tipos de células que se mantienen intactos en la arquitectura multicelular.

Un ejemplo de tales órganos especializados es un órg....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NOTA: El esquema general de protocolos se muestra en la Figura 1.

1. La disección de la larval anillo prensaestopas (RG)

NOTA: En D. melanogaster, que pertenece a Diptera cyclorrhaphous, el PG está dentro de un órgano endocrino compuesto llama la glándula anillo (RG, la Figura 2D). Puesto que es inviable que el PG se separa quirúrgicamente de otros tipos de células (discutidos más .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Se utilizaron los protocolos anteriores para visualizar los órganos androgénica y sus órganos interactivos en D. melanogaster larvas y adultos hembras. El esquema general de protocolos se muestra en la Figura 1.

El RG, incluyendo el PG (Figura 2D), es más pequeño y más transparente que el cerebro y se encuentra en el lado anterior-dorsal del cerebro (Figura 2A-C y 3A-E). Para etiquetar las células PG, varios grupos han generado varios tipos de anticu.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Se estudió la biosíntesis ecdisteroide y su mecanismo de regulación en D. melanogaster, e ideó un protocolo para la disección y la inmunotinción. El momento de la biosíntesis de ecdiesteroide se ve afectada por las señales ambientales a través de entradas neuronales 33, por lo que es esencial para mantener la inervación de los órganos ecdysteroidogenic junto con el cerebro, VNC, y otros tejidos durante la disección.

Como se describió anteriorment.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Agradecemos a Reiko Kise y Tomotsune Ameku por su apoyo técnico a este trabajo. Agradecemos también a Kei Ito, Olga Alekseyenko, Akiko Koto, Masayuki Miura, el Bloomington Drosophila Stock Center, Kyoto Stock Center (DGRC), y el Banco hibridoma Estudios del Desarrollo de las acciones y los reactivos. Este trabajo fue apoyado por becas a YSN de JSP KAKENHI la subvención Número 16K20945, La Fundación Naito, y el Premio de Investigación de Ciencias Inoue; y con una donación a RN de MEXT KAKENHI la subvención Número 16H04792.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
egg collection
tissue culture dish (55 mm)AS ONE1-8549-02 for grape-juice agar plates
collection cupHIKARI KAGAKU
yeast pasteOriental dry yeast, Tokyo
100% grape juiceWelch Food Inc.
rearing larvae
small vials (12ml, 40×23.5 mm, PS)SARSTEDT58.487
disposable loopAS ONE6-488-01
standard fly food the recepi us on the website of Blooington stock center.
dissection
dissecting microscopeCarl ZeissStemi 2000-C
dissecting microscopeLeicaS8 AP0
tissue culture dish (35 x 10 mm, non-treated)IWAKI1000-035
SylgardTORAYcoarting silicon inside dishes
Terumo needle (27G, 0.40 x 19 mm) TERUMONN-2719SA "knife" to cut the tissue
Terumo syringe, 1mlTERUMOSS-01T
forceps, Inox, #5Dumont, Switzerland
insect pin (0.18 mm in diameter)Shiga Brandfor fillet dissection
micro scissorsNATSUME SEISAKUSHO CO LTD. MB-50-10
fixation
ultrapure waterMerck Millipore
phosphate buffered saline (PBS)
FormaldehydeNacalai tesque16222-65
ParaformaldehydeNacalai tesque02890-45
Triton-X100Nacalai tesque35501-15
microtubes (1.5 ml)INA OPTIKACF-0150
Incubation
As one swist mixer TM-300 (rocker)As oneTM-300rocker
Bovine Serum AlbuminSIGMA9048-46-8
primary antibody
anti-Sro (guinea pig), 1:1000
anti-GFP (rabbit), 1:1000Molecular ProbesA6455Shimada-Niwa ans Niwa, 2014
anti-GFP (mouse mAb, GF200), 1:100Nakarai tesque04363-66
anti-5HT (rabbit), 1:500SIGMAS5545
anti-Hts 1B1 (mouse)Developmental Studies Hybridoma Bank (DSHB)1B1
anti-DE-cadherin (rat), 1:20DSHBDCAD2
anti-nc82 (mouse), 1:50DSHBnc82
secondary antibody
Goat anti-Rabbit IgG (H+L) Secondary Antibody, Alexa Fluor 488 conjugateLife TechnologiesA-11008
Goat anti-Mouse IgG (H+L) Secondary Antibody, Alexa Fluor 488 conjugateLife TechnologiesA-11001
Goat anti-Rat IgG (H+L) Secondary Antibody, Alexa Fluor 546 conjugateLife TechnologiesA-11081
Goat anti-Guinea Pig IgG (H+L) Secondary Antibody, Alexa Fluor 555 conjugateLife TechnologiesA-21435
Alexa Fluor 546 dye-conjugated phalloidinLife TechnologiesA-22283
Mounting reagents
Micro slide glassMatsunami Glass Ind.,Ltd.SS7213
Square microscope cover glassMatsunami Glass Ind.,Ltd.C218181
FluorSave reagent (Mounting reagent)Calbiochem345789
Transfer pipette 1 ml (Disposable dropper)WATSON5660-222-1S
imaging
LSM700 laser scanning microscope systemCarl Zeissinverted Axio Observer. Z1 SP left
image processing
LSM700 ZENCarl ZeissIt is a special user interface based on the 64 bit Microsoft Windows7 operating system
ImageJ
Fly stocks
w; GMR45C06-GAL4 from Bloomington Drosophila Stock Center. (#46260)
UAS–GFP; UAS–mCD8::GFPgifts from K. Ito, The University of Tokyo.
w[1118]
w; phantom-GAL4#22/UAS-turboRFP
w; UAS-mCD8::GFP; TRH-GAL4see in Ref29, Alekseyenko, O. V, Lee, C. & Kravitz, E. A.(2010)
w; UAS-mCD8::GFP from Bloomington Drosophila Stock Center. (#32188)
yw;; nSyb-GAL4 from Bloomington Drosophila Stock Center. (#51941)

  1. Miller, W. L., Auchus, R. J. The Molecular Biology, Biochemistry, and Physiology of Human Steroidogenesis and Its Disorders. Endocr. Rev. 32 (1), 81-151 (2011).
  2. Rousseau, G. G. Fifty years ago: The quest for steroid hormone receptors. Mol. Cell. Endocrinol. 375 (1), 10-13 (2013).
  3. Gilbert, L. I., Rybczynski, R., Warren, J. T. Control and biochemical nature of the ecdysteroidogenic pathway. Annu. Rev. Entomol. 47, 883-916 (2002).
  4. Niwa, R., Niwa, Y. S. Enzymes for ecdysteroid biosynthesis: their biological functions in insects and beyond. Biosci. Biotechnol. Biochem. 78 (8), 1283-1292 (2014).
  5. Kozlova, T., Thummel, C. S. Steroid regulation of postembryonic development and reproduction in drosophila. Trends Endocrinol. Metab. 11 (7), 276-280 (2000).
  6. Ishimoto, H., Kitamoto, T. Beyond molting-roles of the steroid molting hormone ecdysone in regulation of memory and sleep in adult Drosophila. Fly. 5 (3), 215-220 (2011).
  7. Ishimoto, H., Sakai, T., Kitamoto, T. Ecdysone signaling regulates the formation of long-term courtship memory in adult Drosophila melanogaster. Proc. Natl. Acad. Sci. USA. 106 (15), 6381-6386 (2009).
  8. Simon, A. F., Shih, C., Mack, A., Benzer, S. Steroid control of longevity in Drosophila melanogaster. Science. 299 (5611), 1407-1410 (2003).
  9. Buszczak, M., Freeman, M. R., Carlson, J. R., Bender, M., Cooley, L., Segraves, W. a Ecdysone response genes govern egg chamber development during mid-oogenesis in Drosophila. Development. 126 (20), 4581-4589 (1999).
  10. Carney, G. E., Bender, M. The drosophila ecdysone receptor (EcR) gene is required maternally for normal oogenesis. Genetics. 154 (3), 1203-1211 (2000).
  11. Uryu, O., Ameku, T., Niwa, R. Recent progress in understanding the role of ecdysteroids in adult insects: Germline development and circadian clock in the fruit fly Drosophila melanogaster. Zoological Lett. 1, 32 (2015).
  12. Ameku, T., Niwa, R. Mating-Induced Increase in Germline Stem Cells via the Neuroendocrine System in Female Drosophila. PLOS Genet. 12 (6), e1006123 (2016).
  13. Danielsen, E. T., et al. A Drosophila Genome-Wide Screen Identifies Regulators of Steroid Hormone Production and Developmental Timing. Dev. Cell. 37 (6), 558-570 (2016).
  14. Ou, Q., Zeng, J., Yamanaka, N., Brakken-Thal, C., O'Connor, M. B., King-Jones, K. The Insect Prothoracic Gland as a Model for Steroid Hormone Biosynthesis and Regulation. Cell Rep. , (2016).
  15. Yamanaka, N., Rewitz, K. F., O'Connor, M. B. Ecdysone control of developmental transitions: lessons from Drosophila research. Annu. Rev. Entomol. 58, 497-516 (2013).
  16. Niwa, Y. S., Niwa, R. Transcriptional regulation of insect steroid hormone biosynthesis and its role in controlling timing of molting and metamorphosis. Dev. Growth Differ. 58, 94-105 (2015).
  17. Monastirioti, M. Distinct octopamine cell population residing in the CNS abdominal ganglion controls ovulation in Drosophila melanogaster. Dev. Biol. 264 (1), 38-49 (2003).
  18. Siegmund, T., Korge, G. Innervation of the ring gland of Drosophila melanogaster. J. Comp. Neurol. 431 (4), 481-491 (2001).
  19. McBrayer, Z., et al. Prothoracicotropic Hormone Regulates Developmental Timing and Body Size in Drosophila. Dev. Cell. 13 (6), 857-871 (1979).
  20. Shimada-Niwa, Y., Niwa, R. Serotonergic neurons respond to nutrients and regulate the timing of steroid hormone biosynthesis in Drosophila. Nat. Commun. 5, 5778 (2014).
  21. Brady, J. A simple technique for making very fine, durable dissecting needles by sharpening tungsten wire electrolytically. Bull World Health Organ. 32 (1), 143-144 (1965).
  22. Abramoff, M. D., Magalhães, P. J., Ram, S. J. Image processing with ImageJ. Biophotonics Int. 11 (7), 36-42 (2004).
  23. Ohhara, Y., et al. Autocrine regulation of ecdysone synthesis by β3-octopamine receptor in the prothoracic gland is essential for Drosophila metamorphosis. Proc. Natl. Acad. Sci. USA. 112 (5), 1452-1457 (2015).
  24. Gibbens, Y. Y., Warren, J. T., Gilbert, L. I., O'Connor, M. B. Neuroendocrine regulation of Drosophila metamorphosis requires TGFbeta/Activin signaling. Development. 138 (13), 2693-2703 (2011).
  25. Parvy, J. P., et al. A role for βFTZ-F1 in regulating ecdysteroid titers during post-embryonic development in Drosophila melanogaster. Dev. Biol. 282 (1), 84-94 (2005).
  26. Parvy, J. -. P., et al. Forward and feedback regulation of cyclic steroid production in Drosophila melanogaster. Development. 141 (20), 3955-3965 (2014).
  27. Brand, A. H., Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 118 (2), 401-415 (1993).
  28. Rewitz, K. F., Yamanaka, N., Gilbert, L. I., O'Connor, M. B. The Insect Neuropeptide PTTH Activates Receptor Tyrosine Kinase Torso to Initiate Metamorphosis. Science. 326 (5958), 1403-1405 (2009).
  29. Li, H. -. H., et al. A GAL4 driver resource for developmental and behavioral studies on the larval CNS of Drosophila. Cell Rep. 8 (3), 897-908 (2014).
  30. Alekseyenko, O. V., Lee, C., Kravitz, E. A. Targeted manipulation of serotonergic neurotransmission affects the escalation of aggression in adult male Drosophila melanogaster. PLOS One. 5 (5), e10806 (2010).
  31. Domanitskaya, E., Anllo, L., Schüpbach, T. Phantom, a cytochrome P450 enzyme essential for ecdysone biosynthesis, plays a critical role in the control of border cell migration in in Drosophila. Dev. Biol. 386 (2), 408-418 (2014).
  32. Song, X., Zhu, C. -. H., Doan, C., Xie, T. Germline stem cells anchored by adherens junctions in the Drosophila ovary niches. Science. 296 (5574), 1855-1857 (2002).
  33. Niwa, Y. S., Niwa, R. Neural control of steroid hormone biosynthesis during development in the fruit fly Drosophila melanogaster. Genes Genet. Syst. 89 (1), 27-34 (2014).
  34. Yoshiyama-Yanagawa, T., et al. The conserved Rieske oxygenase DAF-36/Neverland is a novel cholesterol-metabolizing enzyme. J. Biol. Chem. 286 (29), 25756-25762 (2011).
  35. Niwa, R., et al. Non-molting glossy/shroud encodes a short-chain dehydrogenase/reductase that functions in the "Black Box" of the ecdysteroid biosynthesis pathway. Development. 137 (12), 1991-1999 (2010).
  36. Komura-Kawa, T., et al. The Drosophila Zinc Finger Transcription Factor Ouija Board Controls Ecdysteroid Biosynthesis through Specific Regulation of spookier. PLOS Genet. 11 (12), e1005712 (2015).
  37. Yamanaka, N., Marqués, G., O'Connor, M. B. Vesicle-Mediated Steroid Hormone Secretion in Drosophila melanogaster. Cell. 163 (4), 907-919 (2015).
  38. Riemensperger, T., Pech, U., Dipt, S., Fiala, A. Optical calcium imaging in the nervous system of Drosophila melanogaster. BBA-Gen. Subjects. 1820 (8), 1169-1178 (2012).
  39. Owald, D., Lin, S., Waddell, S. Light, heat, action: neural control of fruit fly behavior. Phil. T. Roy. Soc. B. 370 (1677), 20140211 (2015).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved