A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
The goal of this protocol is to demonstrate the preparation, culture, treatment, and immunostaining of neonatal murine cochlear explants. The technique can be utilized as an in vitro screening tool in hearing research.
While there have been remarkable advances in hearing research over the past few decades, there is still no cure for Sensorineural Hearing Loss (SNHL), a condition that typically involves damage to or loss of the delicate mechanosensory structures of the inner ear. Sophisticated in vitro and ex vivo assays have emerged in recent years, enabling the screening of an increasing number of potentially therapeutic compounds while minimizing resources and accelerating efforts to develop cures for SNHL. Though homogenous cultures of certain cell types continue to play an important role in current research, many scientists now rely on more complex organotypic cultures of murine inner ears, also known as cochlear explants. The preservation of organized cellular structures within the inner ear facilitates the in situ evaluation of various components of the cochlear infrastructure, including inner and outer hair cells, spiral ganglion neurons, neurites, and supporting cells. Here we present the preparation, culture, treatment, and immunostaining of neonatal murine cochlear explants. The careful preparation of these explants facilitates the identification of mechanisms that contribute to SNHL and constitutes a valuable tool for the hearing research community.
Sensorineural Hearing Loss (SNHL) reflects damage to the inner ear or ascending auditory pathway. While hearing loss is the most common sensory deficit in humans1, curative therapies do not yet exist2. Although cochlear or auditory brainstem implants can restore some degree of hearing to patients with severe to profound SNHL, the hearing provided by these devices is still very different from "natural" hearing, especially during attempts to understand speech in noise or to listen to music.
While hair cell degeneration has long been considered the primary consequence of traumatic auditory events (e.g., exposure to loud noise), there is growing evidence that the synapses transmitting information from hair cells to the auditory nerve are at least as vulnerable to acoustic trauma3,4,5,6. Since human audiometric thresholds, the current gold standard for the evaluation of hearing function, do not predict specific cellular damage in the inner ear, more refined tools are needed to detect cellular degeneration as soon as possible and to initiate adequate treatment7.
Promising pharmaceutical treatments for hearing loss are often tested on homogenous cell cultures in vitro, but such systems do not accurately model the cochlear microenvironment. Cochlear cells are known to secrete trophic factors that influence other cell types within the cochlea8,9, a crucial in vivo process that is lost when the organ of Corti10,11 or Spiral Ganglion Neurons (SGNs)12 are cultured in isolation or when molecular markers are analyzed13. However, in vivo studies that may be necessary for the validation of in vitro data to establish new, personalized treatments for hearing loss in the pursuit of "precision medicine" require significant resources and time. This is especially relevant when considering how much effort is required to perfect and perform middle ear or round window membrane injections with hearing tests and the subsequent dissection of cochlear whole-mounts. The efficient screening of promising compounds in organotypic ex vivo cultures known as cochlear explants provides an economic and reliable alternative14,15,16,17.
This article details a protocol by which to generate, maintain, and evaluate treated cochlear explants. Specific applications for this model are emphasized, including its use in the screening of potentially therapeutic compounds and the comparative evaluation of viral vectors for gene therapy. An ex vivo explant approach allows researchers to visualize the effects of a given treatment on different cell populations in situ, facilitating the identification of cell type-specific mechanisms and the subsequent refinement of targeted therapeutics.
Overall, this technique provides a model to study the cochlea ex vivo while preserving vital cross-talk between the vastly different cell types that coexist within the cochlea.
Access restricted. Please log in or start a trial to view this content.
The study protocol was approved by the Institutional Animal Care and Use Committee (IACUC) of Massachusetts Eye and Ear. Experiments were carried out according to the Code of Ethics of the World Medical Association.
1. Preparing the Dissection
2. Murine Cochlear Explant Dissection
3. Transfer of Specimens to the Culture Plates
4. Adding Final Culture Media and Substances of Interest
NOTE: Cochlear explants will be ready for use 10-16 h later.
5. Immunofluorescence - Day 1
6. Immunofluorescence - Day 2
7. Confocal Imaging
Access restricted. Please log in or start a trial to view this content.
While many protocols focus on organ of Corti explants, this technique attempts to preserve the anatomy of the entire cochlear turn, including the SGNs. This gives researchers the opportunity to analyze the effects of a given treatment on neurites and somata of SGNs in addition to the organ of Corti. Performing a dissection that preserves part of the modiolus, as described here, is more technically challenging than explanting the organ of Corti alone. However, the neurite and SGN area is i...
Access restricted. Please log in or start a trial to view this content.
Researchers must perfect the dissection technique before carrying out experiments involving cochlear explants. Hair cells are commonly damaged during dissections performed early on in the learning curve, and a particularly problematic moment for their integrity is the removal of the tectorial membrane, which requires steady hands, proper tools, and experience. To save time and resources, a visual control should be performed under the dissection microscope and potentially damaged areas should be noted. Instead of using ex...
Access restricted. Please log in or start a trial to view this content.
The authors have nothing to disclose.
This work was supported by the National Institute of Deafness and Other Communication Disorders grants R01DC015824 (K.M.S.) and T32DC00038 (supporting S.D.), the Department of Defense grant W81XWH-15-1-0472 (K.M.S.), the Bertarelli Foundation (K.M.S.), the Nancy Sayles Day Foundation (K.M.S.), and the Lauer Tinnitus Research Center (K.M.S.). We thank Jessica E. Sagers, B.A. for insightful comments on the manuscript.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Ampicillin, Sodium Salt | Invitrogen | 11593-027 | |
anti-CtBP2 antibody, mouse(IgG1) | BD Transduction Laboratories | 612044 | |
anti-Myo7A antibody, rabbit | Proteus Biosciences | 25-6790 | |
anti-NF-H antibody, chicken | EMD Millipore | AB5539 | |
anti-PSD95 antibody, mouse(IgG2a) | Antibodies Inc. | 75-028 | |
anti-TuJ1 antibody, mouse | BioLegend | 801202 | |
Cell-Tak Cell and Tissue Adhesive, 5 mg | Corning | 354241 | |
CELLSTAR 15 mL Centrifuge Tubes, Conical bottom, Graduation, Sterile | Greiner Bio-One | 188161 | |
CELLSTAR Cell Culture Dish, 100 x 20 mm | Greiner Bio-One | 664160 | |
CELLSTAR Cell Culture Dish, 35 x 10 mm, 4 inner rings | Greiner Bio-One | 627170 | |
CELLSTAR Cell Culture Dish, 60 x 15 mm | Greiner Bio-One | 628160 | |
CELLSTAR 50 mL Centrifuge Tubes, Conical bottom, Graduation, Sterile | Greiner Bio-One | 227261 | |
Clear Nail Polish | Electron Microscopy Sciences | 72180 | |
Clear Wall Glass Bottom Dishes (Glass 40mm), PELCO®, Sleeve/20, 50 x 7 mm | Ted Pella Inc. | 14027-20 | |
Coverslips, Round, Glass, 10 mm diameter, Thickness #1, 0.13 - 0.16mm | Ted Pella Inc. | 260368 | |
DAPI (4',6-Diamidino-2-Phenylindole, Dihydrochloride) | Thermo Fisher Scientific | D1306 | |
Distilled water, 500 mL | Thermo Fisher Scientific | 15230-162 | |
Dulbecco's Modified Eagle's Medium (DMEM), high glucose, pyruvate, no glutamine, 500 mL | Thermo Fisher Scientific | 10313-039 | |
Dumont #4 Forceps | Fine Science Tools | 11241-30 | |
Dumont #55 Forceps (Dumostar) | Fine Science Tools | 11295-51 | |
Ethyl alcohol (EtOH), Pure, 200 proof, anhydrous, ≥99.5% | Sigma-Aldrich | 459836-1L | |
Fetal Bovine Serum (FBS), qualified, USDA-approved regions, 500 mL | Thermo Fisher Scientific | 10437-028 | Aliquot in 50 mL tubes and store in -20°C freezer |
goat anti-chicken-647 secondary antibody | Thermo Fisher Scientific | A-21469 | |
goat anti-mouse(IgG)-568 secondary antibody | Thermo Fisher Scientific | A-11004 | |
goat anti-mouse(IgG1)-568 secondary antibody | Thermo Fisher Scientific | A-21124 | |
goat anti-mouse(IgG2a)-488 secondary antibody | Thermo Fisher Scientific | A-21131 | |
goat anti-rabbit-488 secondary antibody | Thermo Fisher Scientific | R37116 | |
H2O, sterile, EmbryoMax Ultra Pure Water, 500 mL | EMD Millipore | TMS-006-B | |
Hank's Balanced Salt Solution (HBSS), calcium, magnesium, no phenol red, 500 mL | Thermo Fisher Scientific | 14025-092 | |
Instrument Tray with Lid Stainless Steel | Mountainside Medical | TechMed4255 | |
Micro (dissecting) knife – angled 30° | Fine Science Tools | 10056-12 | |
Microscope slides, VistaVision, color-coded, 75 x 25 mm (3 x 1"), 1 mm thick, white, pack of 72 | VWR | 16004-382 | |
N-2 Supplement (100X), 5 mL | Thermo Fisher Scientific | 17502-048 | |
NaHCO3, Sodium Bicarbonate 7.5% solution, 100 mL | Thermo Fisher Scientific | 25080-094 | |
NaOH, sodium hydroxide solution, 1 L | Thermo Fisher Scientific | SS266-1 | |
Normal Horse Serum (NHS) | Invitrogen | 16050130 | |
Operating scissors | Roboz Surgical Instruments Co. | RS-6806 | |
Paraformaldehyde (PFA), Reagent Grade, Crystalline | Sigma-Aldrich | P6148 | Prior to use: Establish Standard Operating Procedures based on protocols available online |
PBS, pH 7.4, 500 mL | Thermo Fisher Scientific | 10010-023 | Autoclave prior to use |
Phalloidin, Alexa Fluor 568 | Thermo Fisher Scientific | A12380 | |
Prep Pad, Non Sterile | Medline | 05136CS | |
Safe-Lock Microcentrifuge Tubes, Polypropylene, 0.5 mL | Eppendorf | 022363719 | Autoclave prior to use |
Safe-Lock Microcentrifuge Tubes, Polypropylene, 1.5 mL | Eppendorf | 022363204 | Autoclave prior to use |
Scalpel Blades - #15 | Fine Science Tools | 10015-00 | |
Scalpel Handle - #4 | Fine Science Tools | 10004-13 | |
Stemi 2000-C Stereo Microscope | Zeiss | 000000-1106-133 | |
TCS SP5 confocal microscope | Leica | N/A | |
Triton-X (non-ionic surfactant) | Integra | T756.30.30 | |
VectaShield antifade mounting medium for fluorescence | Vector Laboratories, Inc. | H-1000 | |
Zipper Bag, Reclosable, 4 x 6'' - 2 mm thick | Zipline | 0609132541599 |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved