JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Neuroscience

Echtzeit-Iontophorese mit Tetramethylammonium zur Quantifizierung der Volumenfraktion und Tortuosität des Gehirns extrazellulären Raumes

Published: July 24th, 2017

DOI:

10.3791/55755

1Department of Medicine, University of Virginia, 2Department of Cell Biology, SUNY Downstate Medical Center, 3Neural and Behavioral Science Graduate Program, SUNY Downstate Medical Center, 4Division of Neonatology, University of Virginia, 5Department of Neuroscience and Physiology, New York University School of Medicine
* These authors contributed equally

Dieses Protokoll beschreibt Echtzeit-Iontophorese, eine Methode, die physikalische Parameter des extrazellulären Raumes (ECS) des lebenden Gehirns misst. Die Diffusion eines in das ECS freigesetzten Inertmoleküls wird zur Berechnung des ECS-Volumenanteils und der Tortuosität herangezogen. Es ist ideal für das Studium akuter reversibler Änderungen an Gehirn ECS.

Diese Übersicht beschreibt die grundlegenden Konzepte und das Protokoll zur Durchführung der Echtzeit-Iontophorese (RTI) -Methode, die Gold-Standard, um den extrazellulären Raum (ECS) des lebenden Gehirns zu erforschen und zu quantifizieren. Die ECS umgibt alle Gehirnzellen und enthält sowohl interstitielle Flüssigkeit als auch extrazelluläre Matrix. Der Transport von vielen Substanzen, die für die Gehirnaktivität erforderlich sind, einschließlich Neurotransmitter, Hormone und Nährstoffe, erfolgt durch Diffusion durch die ECS. Änderungen des Volumens und der Geometrie dieses Raumes treten bei normalen Gehirnprozessen, wie Schlaf und pathologischen Zuständen, wie Ischämie, auf. Allerdings bleibt die Struktur und Regulierung des Gehirns ECS, vor allem in kranken Staaten, weitgehend unerforscht. Die RTI-Methode misst zwei physikalische Parameter des lebenden Gehirns: Volumenbruch und Tortuosität. Volumenanteil ist der Anteil des von ECS besetzten Gewebevolumens. Tortuosität ist ein Maß für die relative Hinderung, die eine Substanz beim Diffundieren durch ein Gehirn bekommtGion im Vergleich zu einem Medium ohne Hindernisse. In RTI wird ein inertes Molekül aus einer Quellenmikroelektrode in das Gehirn ECS gepulst. Da sich die Moleküle von dieser Quelle weg diffundieren, wird die sich ändernde Konzentration des Ions über die Zeit mit einer ionenselektiven Mikroelektrode gemessen, die etwa 100 μm entfernt ist. Aus der resultierenden Diffusionskurve können sowohl Volumenanteil als auch Tortuosität berechnet werden. Diese Technik wurde in Gehirnscheiben von mehreren Arten (einschließlich Menschen) und in vivo verwendet , um akute und chronische Veränderungen an ECS zu untersuchen. Im Gegensatz zu anderen Methoden kann RTI verwendet werden, um sowohl reversible als auch irreversible Änderungen des Gehirns ECS in Echtzeit zu untersuchen.

Der extrazelluläre Raum (ECS) ist das Netzwerk von miteinander verbundenen Kanälen außerhalb aller Gehirnzellen und enthält sowohl interstitielle Flüssigkeit als auch extrazelluläre Matrix ( Abbildung 1a und Abbildung 1b ). Die Verteilung von vielen Substanzen, die für die Gehirnzellfunktion erforderlich sind, einschließlich Nährstoffe, Hormone und Neurotransmitter, erfolgt durch Diffusion durch die ECS. Änderungen der physikalischen Parameter dieses Raumes, einschließlich Volumen, Geometrie und extrazelluläre Matrix, können die Diffusion durch die ECS und die lokalen Ionenkonzentrationen, die Gehirnze....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Alle Tierverfahren, die verwendet wurden, um Gewebeproben zu erhalten, wurden von der Tierethik-Komitee im SUNY Downstate Medical Center genehmigt.

1. Vorbereitung von Lösungen und Geräten

  1. Bereiten Sie eine 150 mM NaCl-Hinterfüllungslösung für den Referenztubus des ISM vor. Lagern Sie es in einer 10 ml Spritze, die an einem 0,22 μm Filter befestigt ist (um Bakterien oder Partikel zu entfernen).
  2. Vorbereiten einer 150 mM TMA-Chlorid (TMA-Cl) -Verfüllung für die Mik.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Der Nutzen der RTI-Technik wird in einem Experiment demonstriert, das entworfen ist, um die Änderungen in α und während einer hypoosmolaren Herausforderung zu messen ( Abbildung 8 und Abbildung 9 ). Es wurde bereits gezeigt, dass die Verringerung der Osmolarität des ECS durch Waschen auf hypotonischem ACSF eine Abnahme von & agr; und eine Erhöhung von & lgr; 13 bewi.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Abbildung 10
Abbildung 10: Nicht-ideale Daten, die gemeinsame technische Probleme demonstrieren. ( A ) Diagramme allgemeiner technischer Fragen mit Iontophorese-Mikroelektroden: Vergleich der normalen Freisetzung von TMA aus einer funktionierenden Iontophorese-Mikroelektrode mit drei Quellen, die technische Probleme zeigen. [Hohe Vergrößerung, a1] Der Strom in einer idealen iontophoretischen Quelle wird gl.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Die Arbeit wurde von NIH NINDS bewilligt R01 NS047557 unterstützt.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
A/D and D/A converterNational Instruments CorporationNI USB-6221 DAQThe NI USB-6221 is still sold as a 'Legacy' device by NI. They recommend using NI USB-6341 X Series DAQs for new installations, however we have not tested the newer units. We describe the use of the NI USB-6221 with MATLAB and Windows 7 (32-bit). Alternatives: the much older PCI-MIO-16E-4 A/D converter (Used under Windows XP or older OS only) with BNC-2090 BNC connector panel and SH68-68-EP cable. As noted in the Wanda Manual, an experimental MATLAB program to use Axon Binary Files is available.
agaroseLonzaNuSieve GTG Agarose #50081to prepare dilute agarose gel for RTI measurements
amplifier for ISMDaganModel IX2-700 Dual Intracellular Preamplifierion and reference voltage amplifier with N=0.1 (for reference barrel) and N=0.001 (for ion barrel) headstages
biological compound miscroscope (with 4x and 10x objective)for chipping the microelectrode tips and inspecting microelectrodes; various suppliers, e.g. AmScope
borosilicate theta capillary glass tubingHarvard ApparatusWarner Instruments model TG200-4; order #64-0811double-barreled glass tubing for ion-selective microelectrodes and iontophoretic microelectrodes; O.D. 2.0 mm, I.D. 1.4 mm, septum 0.2 mm, length 10 cm
brushWinsor & NewtonUniversity Series 233, size 0round shoft handle brush, available from Amazon
bunsen burnerFisher
camera for visualizing micropipettesOlympusOLY-150requires monitor, IR filter on substage illuminator is optional
chart recorderto record continuously voltages on ion-selective microelectrode during calibration in tetramethylammonium standards and during RTI experiment; e.g. Kipp & Zonen type BD112 dual-cannel chart recorded, available refurbished
chlorotrimethylsilane, puriss., > 99%Sigma-Aldrichcatalog # 92360for silanization; CAUTION: flammable, acute toxicity (oral, dermal, inhalation), skin corrosion, eye damage, reacts violently with water, see Sigma-Aldrich Safety Information for full description
Commercial SoftwareThe MathWorksMATLAB, Data acquisition toolboxfor data acquisition and analysis using Wanda and Walter programs. Note that an academic license is available.
eye protective gogglesFisher
fixed-stage compound microscopeOlympusBX51WIcan use other compound microscopes with fixed stages
forcepsFine Science Tools#11251-10to chip glass capillary; Dumond #5, preferably used and no longer needed for fine work
fume hoodfor silanization and filling the tip of ion-selective barrel with liquid ion exchanger; various supliers, e.g. Captair with approriate filter sold by Erlab
glass microscope slideFisher#12-550Ato chip microelectrode tips
heater/stirrerFisherCorning PC-420Dto prepare dilute agarose gel and stir solutions
iontophoretic unitDaganION-100 and PS-100ION-100 is a single channel iontophoresis unit +/- 130 V compliance; PS-100 is an external power supply; alternatives: e.g. Axoprobe-1A made by Axon Instruments (now Molecular Devices), out of production, check for availability of refurbished units (eBay and other sites)
liquid ion exchanger (LIX) for tetramethylammoniumWorld Precision InstrumentsIE190 Potassium Ion ExchangerNote: this is equivalent to the original Corning potassium exchanger 477317 based on tetraphenlyborate - do not confuse with neutral carrier potassium exchanger originating from the laboartory of Dr. Simon, ETH, Zurich, which does not sense tetramethylammonium, and is sold by Fluka. You can also make liquid ion exchanger for tetramethylammonium yourself: 3% by weight potassium tetrakis = (p-chlorophenyl) borate dissolved in 2,3-dimethylnitrobenzene. Buy chemicals from Fluka (now part of Sigma). See Oehme and Simon (1976) Anal. Chim. Acta 86: 21-25; CAUTION: The toxicological properties of this liquid ion exchanger have not been fully determined. Ingestion or contact with the human body may be harmful. Exercise due care! Liquid ion exchangers should be stored in a cool place out of direct sunlight.
microelectrode holderWPIM3301EHto hold ion-selective microeletrode prefabricate for silanization and filling the tip of ion-selective barrel with liquid ion exchanger; WPI sells two versions of this holder, clear M3301EH and black M3301EH. In our experience, the clear M3301EH appears to be sturdier then the black M3301EH.
micromanipulatorNarishigeMM-3to position ion-selective microelectrode prefabricate during silanization and filling the tip of ion-selective barrel with liquid ion exchanger; can be substituted with any three-axis micromanipulator in good working condition
micropipette pullerSutter InstrumentsModel P-97to pull double-barreled glass tubing; other pullers can be used as long as they can accommodate large diameter double-barreled glass tubing
microprobe thermometerPhysiotempModel BAT-12Rfine probe of this thermometer is placed close to recording site
needleBDSyringes and Needles # 305122 (25 gauge)for silanization; BD PrecisionGlide needles 25 G x 5/8 in (0.5mm x 16mm)
objective 5x dryOlympusMPlan N
objective 10x water immersionOlympusUMPlan FL N10x objective is water immersion, numerical aperture is 0.3, working distance is 3.3 mm
plastic containers (with lids)Fisher#14-375-148to store tetramethylammonium standard solutions and microelectrodes
platform and x-y translation stage for fixed-stage microscopeEXFOGibraltar Burleighplatform holds slice chamber, micromanipulators and accesorries, x-y translational stage moves microscope without compromising recording stability
porous minicupfor RTI measurements in a dilute agarose gel; homemade
reusable adhesiveBostikBlu-Tackfor securing microelectrodes to holding vessel and other uses; various suppliers, available from Amazon
robotic micromanipulator with precise x,y,z positioningSutter InstrumentsMP-285two mircomanipulators are needed to hold separately ion-selective microelectrode and iontophoretic microelectrode. Also possible to glue micropipettes in a spaced array (see text).
signal conditioning unit with low-pass filterAxon InstrumentsCyberAmp 320 or 380no longer available from the manufacturer but may be available from E-Bay; alternatives: e.g. FLA-01 Filter/Amplifier from Cygnus Technology. This is a single channel instrument with a minimum cutoff at 10 Hz using a multipole Bessel filter but the company may be willing to modify it for a lower cutoff frequency (2 Hz) if needed.
silver wireA-M Systems#7830diameter 0.015", bare (no coating)
slice chamberHarvard ApparatusWarner Model RC-27Lthis is submersion slice chamber; do not use interface slice chamber
stereomicroscopefor silanization and filling the tip of ion-selective barrel with liquid ion exchanger; horizontally mounted; various suppliers
syringe, 10 mLBDSyringes and Needles #309604to backfill microelectrodes and for silanization; BD Luer-Lok tip
syringe filter 0.22µm poreWhatman#6780-1302to filter backfill solutions; available from Fisher
syringe needle, 28 gauge, 97mmWorld Precision InstrumentsMicroFil MF28G-5to backfill microelectrodes
Teflon (=PTFE) tubingComponent SupplySTT-28 PTFE tube light wall (28 gauge)for silanization of ion-selective barrel; fits on BD PrecisionGlide needles 25 G x 5/8 in. Note: Teflon is essential, PVC tubing would melt by hot wax.
temperature control systemHarvard ApparatusWarner Models TC-344B and SH-27ATC-344B is a dual automatic temperature controller, SH-27A is an in-line heater; controller and heater work with Warner slice chambers
tetramethyammonium (TMA) chlorideSigma-AldrichT-34115 M solution; CAUTION: acute toxicity (oral, dermal, inhalation), carcinogenicity, hazardous to the aquatic environment, see Sigma-Aldrich Safety Information for full description
vibrating blade microtomeLeicaVT1000Sto cut brain slices
xylenesFisherX5-1for silanization; CAUTION: flammable, acute toxicity (oral, dermal, inhalation), skin corrosion, eye damage, carcinogenicity, see Fisher Safety Information for full description

  1. Sykova, E., Nicholson, C. Diffusion in brain extracellular space. Physiol Rev. 88 (4), 1277-1340 (2008).
  2. Nicholson, C. Diffusion and related transport mechanisms in brain tissue. Rep Prog Phys. 64 (7), 815-884 (2001).
  3. Nicholson, C. Ion-selective microelectrodes and diffusion measurements as tools to explore the brain cell microenvironment. J Neurosci Methods. 48 (3), 199-213 (1993).
  4. Nicholson, C., Phillips, J. M. Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum. J Physiol. 321, 225-257 (1981).
  5. Nicholson, C., Sykova, E. Extracellular space structure revealed by diffusion analysis. Trends Neurosci. 21 (5), 207-215 (1998).
  6. Xie, L. L., et al. Sleep drives metabolite clearance from the adult brain. Science. 342 (6156), 373-377 (2013).
  7. Hrabetova, S., Nicholson, C., Michael, A. C., Borland, L. M. Biophysical properties of brain extracellular space explored with ion-selective microelectrodes, integrative optical imaging and related techniques. Electrochemical Methods for Neuroscience Neuroscience. , 167-204 (2007).
  8. Rice, M. E., Okada, Y. C., Nicholson, C. Anisotropic and heterogeneous diffusion in the turtle cerebellum: implications for volume transmission. J Neurophysiol. 70 (5), 2035-2044 (1993).
  9. Vargova, L., et al. Diffusion parameters of the extracellular space in human gliomas. Glia. 42 (1), 77-88 (2003).
  10. Haack, N., Durry, S., Kafitz, K. W., Chesler, M., Rose, C. Double-barreled and concentric microelectrodes for measurement of extracellular ion signals in brain tissue. J Vis Exp. (103), (2015).
  11. Xiao, F., Hrabetova, S. Enlarged extracellular space of aquaporin-4-deficient mice does not enhance diffusion of Alexa Fluor 488 or dextran polymers. Neuroscience. 161 (1), 39-45 (2009).
  12. Sherpa, A. D., Pvan de Nes, ., Xiao, F., Weedon, J., Hrabetova, S. Gliotoxin-induced swelling of astrocytes hinders diffusion in brain extracellular space via formation of dead-space microdomains. Glia. 62 (7), 1053-1065 (2014).
  13. Kume-Kick, J., et al. Independence of extracellular tortuosity and volume fraction during osmotic challenge in rat neocortex. J Physiol. 542 (Pt 2), 515-527 (2002).
  14. Saghyan, A., Lewis, D. P., Hrabe, J., Hrabetova, S. Extracellular diffusion in laminar brain structures exemplified by hippocampus. J Neurosci Methods. 205 (1), 110-118 (2012).
  15. Fedirko, N., Svichar, N., Chesler, M. Fabrication and use of high-speed, concentric H+- and Ca2+-selective microelectrodes suitable for in vitro extracellular recording. J Neurophys. 96 (2), 919-924 (2006).
  16. Nicholson, C. Diffusion from an injected volume of a substance in brain tissue with arbitrary volume fraction and tortuosity. Brain Res. 333 (2), 325-329 (1985).
  17. Nicholson, C., Tao, L. Hindered diffusion of high molecular weight compounds in brain extracellular microenvironment measured with integrative optical imaging. Biophys J. 65 (6), 2277-2290 (1993).
  18. Thorne, R. G., Nicholson, C. In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proc Natl Acad Sci U S A. 103 (14), 5567-5572 (2006).
  19. Wolak, D. J., Thorne, R. G. Diffusion of macromolecules in the brain: implications for drug delivery. Mol Pharm. 10 (5), 1492-1504 (2013).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved