JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Immunology and Infection

新世界Zikaウイルス感染クローンからの組換えウイルスの救出とキャラクタリゼーション

Published: June 7th, 2017

DOI:

10.3791/55857

1Department of Microbiology, Immunology, and Pathology, Colorado State University, 2Division of Vector-Borne Diseases, Centers for Disease Control and Prevention

このプロトコールは、2プラスミドの感染性cDNAクローンからの感染性Zikaウイルスの回収を記載している。

感染性cDNAクローンは、ウイルスの遺伝子操作を可能にし、したがって、ワクチン、病原性、複製、伝達およびウイルスの進化に関する作業を容易にする。ここでは、アメリカで爆発的な流行を引き起こしているZikaウイルス(ZIKV)の感染クローンの構築について説明します。フラビウイルス由来のプラスミドでよく見られる細菌への毒性を防ぐために、我々はNS1遺伝子のゲノムを分離し、突然変異を伴わずに正常に回収できなかった完全長構築物よりも安定な2プラスミドシステムを作製した。 2つの断片を連結する消化およびライゲーションの後、全長ウイルスRNAを、T7 RNAポリメラーゼを用いたインビトロ転写によって生成することができる。転写されたRNAの細胞への電気穿孔の後、同様のインビトロでの増殖速度およびインビボでの病原性および感染表現型をマウスおよび蚊でそれぞれ示したウイルスが回収された。

Zikaウイルス(ZIKV; Family FlaviviridaeFlavivirus属)は、2013-14年にブラジルに到着した蚊媒介性フラビウイルスであり、以後、アメリカ全土に広がった熱性疾患の大規模な発生に関連してます1 。さらに、ZIKVは、成人のギラン・バレー症候群や胎児や新生児の小頭症などの重篤な疾患の結果と関連している2 。西半球で急速に普及する前はZIKVについてほとんど知られていなかった。これには分子ツールの欠如が含まれており、したがって機構的研究が妨げられている。感染性cDNAクローンなどのウイルスのための分子ツールは、ワクチンおよび抗ウイルス治療の開発を容易にし、差別的ウイルス病原性、免疫応答およびウイルスの進化に関連するウイルス遺伝因子の評価を可能にする。

フラビウイルスの感染性クローンは、crのため細菌中で非常に不安定であることが知られているそれらのゲノムに存在する恒温性原核生物プロモーター3 。この問題を改善するためにいくつかのアプローチが用いられてきた。ゲノムを複数のプラスミド6に分割すること、低コピー数のベクター(細菌人工染色体を含む)

Log in or to access full content. Learn more about your institution’s access to JoVE content here

感染性クローンプラスミドの形質転換および回収

  1. いくつかの改変を加えた市販の形質転換プロトコール( 例えば 、NEB 5分形質転換プロトコル)を用いて両方のプラスミド(別々に)を形質転換する。どちらのプラスミドもアンピシリン耐性をコードする遺伝子を含んでいるため、選択のためにアンピシリンまたはカルベニシリンを使用する。より安定であるので、カル?.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

ここに記載されたプロトコルは、感染性クローン由来Zikaウイルスの回収を可能にする。非常に不安定な全長バージョン(データは示されていない)と比較して、2プラスミドの感染性クローンシステムを操作することは、慎重に行う場合には容易である。 2つの別個の断片の消化およびライゲーションの後、T7ポリメラーゼによるインビトロ転写を用いてキャッ?.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Here we describe a method for the recovery of a bipartite infectious cDNA clone system for ZIKV. Previously described clones for ZIKV suffer from either attenuation or require the addition of introns, making plasmids larger and preventing rescue in insect cells. Infectious virus can be recovered using the two-plasmid clone system in either mammalian or insect cells (data not shown). In addition, virus recovered from this system behaves similarly to wild-type virus in several cell lines, in an immunocompromised mouse mode.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

著者らは、クローン由来ウイルスの特徴づけを支援してくれたKristen Bullard-Feibelman、Milena Veselinovic、ClaudiaRückertに感謝したいと思います。この研究は、NIHのAI114675(BJG)およびAI067380(GDE)の下での国立アレルギーおよび感染症研究所の助成によって部分的に支持された。

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
NEB Stable CompetentE. coliNew England BioLabsC3040H
Carbenicillin, Disodium Saltvarious
Zyppy Plasmid Miniprep KitZymo ResearchD4036
ZymoPURE Plasmid Maxiprep KitZymo ResearchD4202
SalI-HFNew England BioLabsR3138S20,000 units/ml
NheI-HFNew England BioLabsR3131S20,000 units/ml
ApaLINew England BioLabsR0507S10,000 units/ml
EcoRI-HFNew England BioLabsR3101S20,000 units/ml
BamHI-HFNew England BioLabsR3136S20,000 units/ml
HindIII-HFNew England BioLabsR3104S20,000 units/ml
illustra TempliPhi 100 Amplification KitGE Healthcare Life Sciences25640010
NucleoSpin Gel and PCR Clean-upMacherey-Nagel740609.5
Shrimp Alkaline Phosphatase (rSAP)New England BioLabsM0371S1,000 units/ml
Alkaline Phosphatase, Calf Intestinal (CIP)New England BioLabsM0290S10,000 units/ml
T4 DNA LigaseNew England BioLabsM0202S400,000units/mL
HiScribe T7 ARCA mRNA KitNew England BioLabsE2065S
Vero cellsATCCCCL-81
ECM 630 High Throughput Electroporation SystemBTX45-0423Other machines are acceptable.
LB Broth with agar (Miller)SigmaL3147Can be homemade as well.
Terrific BrothSigmaT0918Can be homemade as well.
Petri DishCelltreat229693
Culture TubesVWR International60818-576
T75 flasksCelltreat229340
T182 flasksCelltreat229350
1x PBSCorning21-040-CV
RPMI 1640 with L-glutamineCorning10-040-CV
DMEM with L-glutamine and 4.5 g/L glucoseCorning10-017-CV
Fetal Bovine Serum (FBS)Atlas BiologicalsFP-0500-A
Tragacanth PowderMP BioMP 104792
Crystal VioletAmresco0528-1006
Ethanol DenaturedVWR InternationalBDH1156-1LP
6 well plateCelltreat229106
12 well plateCelltreat229111
Sequencing OligosIDTsee table 1
Qubit 3.0ThermoFisherQubit 3.0other methods are acceptable.
Qubit dsDNA BR Assay KitThermoFisherQ32850other methods are acceptable.
Qubit RNA HS Assay KitThermoFisherQ32852other methods are acceptable.
Class II Biosafety CabinetVariesN/AThis is necessary for live-virus work.

  1. Kindhauser, M. K., Allen, T., Frank, V., Santhana, R. S., Dye, C. Zika: the origin and spread of a mosquito-borne virus. Bull World Health Organ. 94 (9), 675C-686C (2016).
  2. Oehler, E., et al. Zika virus infection complicated by Guillain-Barre syndrome--case report, French Polynesia, December 2013. Euro Surveill. 19 (9), (2014).
  3. Li, D., Aaskov, J., Lott, W. B. Identification of a cryptic prokaryotic promoter within the cDNA encoding the 5' end of dengue virus RNA genome. PLoS One. 6 (3), e18197 (2011).
  4. Pu, S. Y., et al. A novel approach to propagate flavivirus infectious cDNA clones in bacteria by introducing tandem repeat sequences upstream of virus genome. J Gen Virol. 95 (Pt 7), 1493-1503 (2014).
  5. Pu, S. Y., et al. Successful propagation of flavivirus infectious cDNAs by a novel method to reduce the cryptic bacterial promoter activity of virus genomes. J Virol. 85 (6), 2927-2941 (2011).
  6. Rice, C. M., Grakoui, A., Galler, R., Chambers, T. J. Transcription of infectious yellow fever RNA from full-length cDNA templates produced by in vitro ligation. New Biol. 1 (3), 285-296 (1989).
  7. Yun, S. I., Kim, S. Y., Rice, C. M., Lee, Y. M. Development and application of a reverse genetics system for Japanese encephalitis virus. J Virol. 77 (11), 6450-6465 (2003).
  8. Gualano, R. C., Pryor, M. J., Cauchi, M. R., Wright, P. J., Davidson, A. D. Identification of a major determinant of mouse neurovirulence of dengue virus type 2 using stably cloned genomic-length cDNA. J Gen Virol. 79 (Pt 3), 437-446 (1998).
  9. Johansen, I. E. Intron insertion facilitates amplification of cloned virus cDNA in Escherichia coli while biological activity is reestablished after transcription in vivo. Proc Natl Acad Sci U S A. 93 (22), 12400-12405 (1996).
  10. Shan, C., et al. An Infectious cDNA Clone of Zika Virus to Study Viral Virulence, Mosquito Transmission, and Antiviral Inhibitors. Cell Host Microbe. 19 (6), 891-900 (2016).
  11. Schwarz, M. C., et al. Rescue of the 1947 Zika Virus Prototype Strain with a Cytomegalovirus Promoter-Driven cDNA Clone. mSphere. 1 (5), (2016).
  12. Tsetsarkin, K. A., et al. A Full-Length Infectious cDNA Clone of Zika Virus from the 2015 Epidemic in Brazil as a Genetic Platform for Studies of Virus-Host Interactions and Vaccine Development. MBio. 7 (4), (2016).
  13. Gadea, G., et al. A robust method for the rapid generation of recombinant Zika virus expressing the GFP reporter gene. Virology. 497, 157-162 (2016).
  14. Kapoor, M., Zhang, L., Mohan, P. M., Padmanabhan, R. Synthesis and characterization of an infectious dengue virus type-2 RNA genome (New Guinea C strain). Gene. 162 (2), 175-180 (1995).
  15. Messer, W. B., et al. Development and characterization of a reverse genetic system for studying dengue virus serotype 3 strain variation and neutralization. PLoS Negl Trop Dis. 6 (2), e1486 (2012).
  16. Kinney, R. M., et al. Avian virulence and thermostable replication of the North American strain of West Nile virus. J Gen Virol. 87 (Pt 12), 3611-3622 (2006).
  17. Chang, A. C., Cohen, S. N. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol. 134 (3), 1141-1156 (1978).
  18. Weger-Lucarelli, J., et al. Development and Characterization of Recombinant Virus Generated from a New World Zika Virus Infectious Clone. J Virol. 91 (1), (2017).
  19. Roberts, P. L., Lloyd, D. Virus inactivation by protein denaturants used in affinity chromatography. Biologicals. 35 (4), 343-347 (2007).
  20. Baer, A., Kehn-Hall, K. Viral concentration determination through plaque assays: using traditional and novel overlay systems. J Vis Exp. (93), e52065 (2014).
  21. Weger-Lucarelli, J., et al. Development and Characterization of Recombinant Virus Generated from a New World Zika Virus Infectious Clone. J Virol. , (2016).
  22. Grubaugh, N. D., et al. Genetic Drift during Systemic Arbovirus Infection of Mosquito Vectors Leads to Decreased Relative Fitness during Host Switching. Cell Host Microbe. 19 (4), 481-492 (2016).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved