JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Immunology and Infection

Redning og karakterisering av rekombinant virus fra en ny verden Zika Virus smittsom klon

Published: June 7th, 2017

DOI:

10.3791/55857

1Department of Microbiology, Immunology, and Pathology, Colorado State University, 2Division of Vector-Borne Diseases, Centers for Disease Control and Prevention

Denne protokollen beskriver utvinningen av smittsomt Zika-virus fra en to-plasmidinfeksjonell cDNA-klon.

Infeksiøse cDNA kloner tillater genetisk manipulering av et virus, og dermed letter arbeidet med vaksiner, patogenese, replikasjon, overføring og viral evolusjon. Her beskriver vi konstruksjonen av en smittsom klon for Zika virus (ZIKV), som for tiden forårsaker et eksplosivt utbrudd i Amerika. For å forhindre toksisitet for bakterier som vanligvis observeres med flavivirus-avledede plasmider, genererte vi et to-plasmidsystem som separerer genomet ved NS1-genet og er stabile enn full lengdekonstruksjoner som ikke kunne bli vellykket gjenopprettet uten mutasjoner. Etter fordøyelse og ligering for å bli med i de to fragmentene, kan full lengde viralt RNA genereres ved in vitro transkripsjon med T7 RNA polymerase. Etter elektroporering av transkribert RNA i celler ble virus gjenvunnet som utviste tilsvarende in vitro vekstkinetikk og in vivo virulens- og infeksjonsfenotyper hos henholdsvis mus og mygg.

Zika-virus (ZIKV; Family Flaviviridae : Genus Flavivirus ) er et mygg-båret flavivirus som kom til Brasil i 2013-14 og ble senere assosiert med et massivt utbrudd av feber sykdom som spredte seg over hele Amerika 1 . I tillegg har ZIKV vært knyttet til alvorlige sykdomsutfall, slik som Guillain-Barré syndrom hos voksne og mikrocefali hos foster og nyfødte 2 . Det var lite kjent om ZIKV før den raske spredningen i den vestlige halvkule. Dette innebar mangel på molekylære verktøy, og dermed hindret mekanistisk forskning. Molekylære verktøy for virus, som infeksiøse cDNA kloner, lette vaksine og antiviral....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Transformasjon og gjenvinning av smittsomme klonplasmider

  1. Transform begge plasmidene (separat) ved hjelp av en kommersiell transformasjonsprotokoll ( f.eks . NEB 5 Minute Transformation Protocol) med noen modifikasjoner. Begge plasmidene inneholder et gen som koder for ampicillinresistens, derfor bruk ampicillin eller carbenicillin for seleksjon. Carbenicillin er foretrukket, da det er mer stabilt.
    1. Fjern celler (se materialetabell) fra -80 ° C fryser og tine på is i 5-1.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Protokollen beskrevet her muliggjør utvinning av infeksiøst klonavledet Zika-virus. Manipulering av det to-plasmidinfeksjonelle klonsystemet er rettferdig når det utføres med forsiktighet, sammenlignet med full lengdeversjoner som er svært ustabile (data ikke vist). Etter fordøyelse og ligering av de to adskilte stykkene, blir takket RNA fremstilt ved bruk av in vitro transkripsjon med T7-polymerase, som deretter elektroporeres i Vero-celler ( Figur 1<.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Here we describe a method for the recovery of a bipartite infectious cDNA clone system for ZIKV. Previously described clones for ZIKV suffer from either attenuation or require the addition of introns, making plasmids larger and preventing rescue in insect cells. Infectious virus can be recovered using the two-plasmid clone system in either mammalian or insect cells (data not shown). In addition, virus recovered from this system behaves similarly to wild-type virus in several cell lines, in an immunocompromised mouse mode.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Forfatterne vil gjerne takke Kristen Bullard-Feibelman, Milena Veselinovic og Claudia Rückert for deres hjelp til å karakterisere klonavledet virus. Dette arbeidet ble delvis støttet av stipend fra National Institute of Allergy and Infectious Diseases, NIH under tilskudd AI114675 (BJG) og AI067380 (GDE).

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
NEB Stable CompetentE. coliNew England BioLabsC3040H
Carbenicillin, Disodium Saltvarious
Zyppy Plasmid Miniprep KitZymo ResearchD4036
ZymoPURE Plasmid Maxiprep KitZymo ResearchD4202
SalI-HFNew England BioLabsR3138S20,000 units/ml
NheI-HFNew England BioLabsR3131S20,000 units/ml
ApaLINew England BioLabsR0507S10,000 units/ml
EcoRI-HFNew England BioLabsR3101S20,000 units/ml
BamHI-HFNew England BioLabsR3136S20,000 units/ml
HindIII-HFNew England BioLabsR3104S20,000 units/ml
illustra TempliPhi 100 Amplification KitGE Healthcare Life Sciences25640010
NucleoSpin Gel and PCR Clean-upMacherey-Nagel740609.5
Shrimp Alkaline Phosphatase (rSAP)New England BioLabsM0371S1,000 units/ml
Alkaline Phosphatase, Calf Intestinal (CIP)New England BioLabsM0290S10,000 units/ml
T4 DNA LigaseNew England BioLabsM0202S400,000units/mL
HiScribe T7 ARCA mRNA KitNew England BioLabsE2065S
Vero cellsATCCCCL-81
ECM 630 High Throughput Electroporation SystemBTX45-0423Other machines are acceptable.
LB Broth with agar (Miller)SigmaL3147Can be homemade as well.
Terrific BrothSigmaT0918Can be homemade as well.
Petri DishCelltreat229693
Culture TubesVWR International60818-576
T75 flasksCelltreat229340
T182 flasksCelltreat229350
1x PBSCorning21-040-CV
RPMI 1640 with L-glutamineCorning10-040-CV
DMEM with L-glutamine and 4.5 g/L glucoseCorning10-017-CV
Fetal Bovine Serum (FBS)Atlas BiologicalsFP-0500-A
Tragacanth PowderMP BioMP 104792
Crystal VioletAmresco0528-1006
Ethanol DenaturedVWR InternationalBDH1156-1LP
6 well plateCelltreat229106
12 well plateCelltreat229111
Sequencing OligosIDTsee table 1
Qubit 3.0ThermoFisherQubit 3.0other methods are acceptable.
Qubit dsDNA BR Assay KitThermoFisherQ32850other methods are acceptable.
Qubit RNA HS Assay KitThermoFisherQ32852other methods are acceptable.
Class II Biosafety CabinetVariesN/AThis is necessary for live-virus work.

  1. Kindhauser, M. K., Allen, T., Frank, V., Santhana, R. S., Dye, C. Zika: the origin and spread of a mosquito-borne virus. Bull World Health Organ. 94 (9), 675C-686C (2016).
  2. Oehler, E., et al. Zika virus infection complicated by Guillain-Barre syndrome--case report, French Polynesia, December 2013. Euro Surveill. 19 (9), (2014).
  3. Li, D., Aaskov, J., Lott, W. B. Identification of a cryptic prokaryotic promoter within the cDNA encoding the 5' end of dengue virus RNA genome. PLoS One. 6 (3), e18197 (2011).
  4. Pu, S. Y., et al. A novel approach to propagate flavivirus infectious cDNA clones in bacteria by introducing tandem repeat sequences upstream of virus genome. J Gen Virol. 95 (Pt 7), 1493-1503 (2014).
  5. Pu, S. Y., et al. Successful propagation of flavivirus infectious cDNAs by a novel method to reduce the cryptic bacterial promoter activity of virus genomes. J Virol. 85 (6), 2927-2941 (2011).
  6. Rice, C. M., Grakoui, A., Galler, R., Chambers, T. J. Transcription of infectious yellow fever RNA from full-length cDNA templates produced by in vitro ligation. New Biol. 1 (3), 285-296 (1989).
  7. Yun, S. I., Kim, S. Y., Rice, C. M., Lee, Y. M. Development and application of a reverse genetics system for Japanese encephalitis virus. J Virol. 77 (11), 6450-6465 (2003).
  8. Gualano, R. C., Pryor, M. J., Cauchi, M. R., Wright, P. J., Davidson, A. D. Identification of a major determinant of mouse neurovirulence of dengue virus type 2 using stably cloned genomic-length cDNA. J Gen Virol. 79 (Pt 3), 437-446 (1998).
  9. Johansen, I. E. Intron insertion facilitates amplification of cloned virus cDNA in Escherichia coli while biological activity is reestablished after transcription in vivo. Proc Natl Acad Sci U S A. 93 (22), 12400-12405 (1996).
  10. Shan, C., et al. An Infectious cDNA Clone of Zika Virus to Study Viral Virulence, Mosquito Transmission, and Antiviral Inhibitors. Cell Host Microbe. 19 (6), 891-900 (2016).
  11. Schwarz, M. C., et al. Rescue of the 1947 Zika Virus Prototype Strain with a Cytomegalovirus Promoter-Driven cDNA Clone. mSphere. 1 (5), (2016).
  12. Tsetsarkin, K. A., et al. A Full-Length Infectious cDNA Clone of Zika Virus from the 2015 Epidemic in Brazil as a Genetic Platform for Studies of Virus-Host Interactions and Vaccine Development. MBio. 7 (4), (2016).
  13. Gadea, G., et al. A robust method for the rapid generation of recombinant Zika virus expressing the GFP reporter gene. Virology. 497, 157-162 (2016).
  14. Kapoor, M., Zhang, L., Mohan, P. M., Padmanabhan, R. Synthesis and characterization of an infectious dengue virus type-2 RNA genome (New Guinea C strain). Gene. 162 (2), 175-180 (1995).
  15. Messer, W. B., et al. Development and characterization of a reverse genetic system for studying dengue virus serotype 3 strain variation and neutralization. PLoS Negl Trop Dis. 6 (2), e1486 (2012).
  16. Kinney, R. M., et al. Avian virulence and thermostable replication of the North American strain of West Nile virus. J Gen Virol. 87 (Pt 12), 3611-3622 (2006).
  17. Chang, A. C., Cohen, S. N. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol. 134 (3), 1141-1156 (1978).
  18. Weger-Lucarelli, J., et al. Development and Characterization of Recombinant Virus Generated from a New World Zika Virus Infectious Clone. J Virol. 91 (1), (2017).
  19. Roberts, P. L., Lloyd, D. Virus inactivation by protein denaturants used in affinity chromatography. Biologicals. 35 (4), 343-347 (2007).
  20. Baer, A., Kehn-Hall, K. Viral concentration determination through plaque assays: using traditional and novel overlay systems. J Vis Exp. (93), e52065 (2014).
  21. Weger-Lucarelli, J., et al. Development and Characterization of Recombinant Virus Generated from a New World Zika Virus Infectious Clone. J Virol. , (2016).
  22. Grubaugh, N. D., et al. Genetic Drift during Systemic Arbovirus Infection of Mosquito Vectors Leads to Decreased Relative Fitness during Host Switching. Cell Host Microbe. 19 (4), 481-492 (2016).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved