JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Immunology and Infection

Salvamento e Caracterização do Vírus Recombinante de um Clone Infeccioso do Vírus do Novo Mundo Zika

Published: June 7th, 2017

DOI:

10.3791/55857

1Department of Microbiology, Immunology, and Pathology, Colorado State University, 2Division of Vector-Borne Diseases, Centers for Disease Control and Prevention

Este protocolo descreve a recuperação do vírus Zika infeccioso a partir de um clone de cDNA infeccioso com dois plasmídeos.

Os clones de cDNA infecciosos permitem a manipulação genética de um vírus, facilitando assim o trabalho em vacinas, patogênese, replicação, transmissão e evolução viral. Aqui descrevemos a construção de um clone infeccioso para o vírus Zika (ZIKV), que atualmente está causando um surto explosivo nas Américas. Para evitar a toxicidade para bactérias comumente observadas com plasmídeos derivados de flavivírus, geramos um sistema de dois plasmídeos que separa o genoma no gene NS1 e é mais estável que as construções de comprimento total que não puderam ser recuperadas com sucesso sem mutações. Após a digestão e a ligação para unir os dois fragmentos, o ARN viral completo pode ser gerado por transcrição in vitro com polimerase de ARN T7. Após a eletroporação do ARN transcrito nas células, recuperou-se o vírus que apresentava cinética de crescimento in vitro semelhante e fenótipos de virulência e infecção in vivo em camundongos e mosquitos, respectivamente.

O vírus Zika (ZIKV; Família Flaviviridae : Gênero Flavivírus ) é um flavivírus transmitido por mosquito que chegou ao Brasil em 2013-14 e posteriormente foi associado a um surto maciço de doença febril que se espalhou pelas Américas 1 . Além disso, o ZIKV tem sido associado a desfechos graves da doença, como a síndrome de Guillain-Barré em adultos e microcefalia em fetos e neonatos 2 . Pouco se sabia sobre ZIKV antes da sua rápida propagação no hemisfério ocidental. Isso incluiu a falta de ferramentas moleculares, dificultando assim a pesquisa mecanicista. Ferramentas moleculares para vírus, t....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Transformação e Recuperação de Plasmídeos de Clone Infecciosos

  1. Transforme ambos os plasmídeos (separadamente) usando um protocolo de transformação comercial ( por exemplo , NEB 5 Minute Transformation Protocol) com algumas modificações. Ambos os plasmídeos contêm um gene que codifica a resistência à ampicilina, portanto, use ampicilina ou carbenicilina para seleção. A carbanilhilina é preferida, pois é mais estável.
    1. Remova as células (veja a Tabela de .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

O protocolo aqui descrito permite a recuperação do vírus Zika infeccioso derivado de clones. Manipular o sistema de clones infecciosos de dois plasmídeos é direto quando realizado com cuidado, em comparação com versões completas que são altamente instáveis ​​(dados não mostrados). Após a digestão e a ligação das duas peças distintas, o ARN tampado é produzido usando transcrição in vitro com polimerase T7 que é então eletroporada em células Vero (

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Here we describe a method for the recovery of a bipartite infectious cDNA clone system for ZIKV. Previously described clones for ZIKV suffer from either attenuation or require the addition of introns, making plasmids larger and preventing rescue in insect cells. Infectious virus can be recovered using the two-plasmid clone system in either mammalian or insect cells (data not shown). In addition, virus recovered from this system behaves similarly to wild-type virus in several cell lines, in an immunocompromised mouse mode.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Os autores agradecem a Kristen Bullard-Feibelman, Milena Veselinovic e Claudia Rückert por sua assistência na caracterização do vírus derivado de clones. Este trabalho foi apoiado em parte por doações do Instituto Nacional de Alergia e Doenças Infecciosas, NIH sob subsídios AI114675 (BJG) e AI067380 (GDE).

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
NEB Stable CompetentE. coliNew England BioLabsC3040H
Carbenicillin, Disodium Saltvarious
Zyppy Plasmid Miniprep KitZymo ResearchD4036
ZymoPURE Plasmid Maxiprep KitZymo ResearchD4202
SalI-HFNew England BioLabsR3138S20,000 units/ml
NheI-HFNew England BioLabsR3131S20,000 units/ml
ApaLINew England BioLabsR0507S10,000 units/ml
EcoRI-HFNew England BioLabsR3101S20,000 units/ml
BamHI-HFNew England BioLabsR3136S20,000 units/ml
HindIII-HFNew England BioLabsR3104S20,000 units/ml
illustra TempliPhi 100 Amplification KitGE Healthcare Life Sciences25640010
NucleoSpin Gel and PCR Clean-upMacherey-Nagel740609.5
Shrimp Alkaline Phosphatase (rSAP)New England BioLabsM0371S1,000 units/ml
Alkaline Phosphatase, Calf Intestinal (CIP)New England BioLabsM0290S10,000 units/ml
T4 DNA LigaseNew England BioLabsM0202S400,000units/mL
HiScribe T7 ARCA mRNA KitNew England BioLabsE2065S
Vero cellsATCCCCL-81
ECM 630 High Throughput Electroporation SystemBTX45-0423Other machines are acceptable.
LB Broth with agar (Miller)SigmaL3147Can be homemade as well.
Terrific BrothSigmaT0918Can be homemade as well.
Petri DishCelltreat229693
Culture TubesVWR International60818-576
T75 flasksCelltreat229340
T182 flasksCelltreat229350
1x PBSCorning21-040-CV
RPMI 1640 with L-glutamineCorning10-040-CV
DMEM with L-glutamine and 4.5 g/L glucoseCorning10-017-CV
Fetal Bovine Serum (FBS)Atlas BiologicalsFP-0500-A
Tragacanth PowderMP BioMP 104792
Crystal VioletAmresco0528-1006
Ethanol DenaturedVWR InternationalBDH1156-1LP
6 well plateCelltreat229106
12 well plateCelltreat229111
Sequencing OligosIDTsee table 1
Qubit 3.0ThermoFisherQubit 3.0other methods are acceptable.
Qubit dsDNA BR Assay KitThermoFisherQ32850other methods are acceptable.
Qubit RNA HS Assay KitThermoFisherQ32852other methods are acceptable.
Class II Biosafety CabinetVariesN/AThis is necessary for live-virus work.

  1. Kindhauser, M. K., Allen, T., Frank, V., Santhana, R. S., Dye, C. Zika: the origin and spread of a mosquito-borne virus. Bull World Health Organ. 94 (9), 675C-686C (2016).
  2. Oehler, E., et al. Zika virus infection complicated by Guillain-Barre syndrome--case report, French Polynesia, December 2013. Euro Surveill. 19 (9), (2014).
  3. Li, D., Aaskov, J., Lott, W. B. Identification of a cryptic prokaryotic promoter within the cDNA encoding the 5' end of dengue virus RNA genome. PLoS One. 6 (3), e18197 (2011).
  4. Pu, S. Y., et al. A novel approach to propagate flavivirus infectious cDNA clones in bacteria by introducing tandem repeat sequences upstream of virus genome. J Gen Virol. 95 (Pt 7), 1493-1503 (2014).
  5. Pu, S. Y., et al. Successful propagation of flavivirus infectious cDNAs by a novel method to reduce the cryptic bacterial promoter activity of virus genomes. J Virol. 85 (6), 2927-2941 (2011).
  6. Rice, C. M., Grakoui, A., Galler, R., Chambers, T. J. Transcription of infectious yellow fever RNA from full-length cDNA templates produced by in vitro ligation. New Biol. 1 (3), 285-296 (1989).
  7. Yun, S. I., Kim, S. Y., Rice, C. M., Lee, Y. M. Development and application of a reverse genetics system for Japanese encephalitis virus. J Virol. 77 (11), 6450-6465 (2003).
  8. Gualano, R. C., Pryor, M. J., Cauchi, M. R., Wright, P. J., Davidson, A. D. Identification of a major determinant of mouse neurovirulence of dengue virus type 2 using stably cloned genomic-length cDNA. J Gen Virol. 79 (Pt 3), 437-446 (1998).
  9. Johansen, I. E. Intron insertion facilitates amplification of cloned virus cDNA in Escherichia coli while biological activity is reestablished after transcription in vivo. Proc Natl Acad Sci U S A. 93 (22), 12400-12405 (1996).
  10. Shan, C., et al. An Infectious cDNA Clone of Zika Virus to Study Viral Virulence, Mosquito Transmission, and Antiviral Inhibitors. Cell Host Microbe. 19 (6), 891-900 (2016).
  11. Schwarz, M. C., et al. Rescue of the 1947 Zika Virus Prototype Strain with a Cytomegalovirus Promoter-Driven cDNA Clone. mSphere. 1 (5), (2016).
  12. Tsetsarkin, K. A., et al. A Full-Length Infectious cDNA Clone of Zika Virus from the 2015 Epidemic in Brazil as a Genetic Platform for Studies of Virus-Host Interactions and Vaccine Development. MBio. 7 (4), (2016).
  13. Gadea, G., et al. A robust method for the rapid generation of recombinant Zika virus expressing the GFP reporter gene. Virology. 497, 157-162 (2016).
  14. Kapoor, M., Zhang, L., Mohan, P. M., Padmanabhan, R. Synthesis and characterization of an infectious dengue virus type-2 RNA genome (New Guinea C strain). Gene. 162 (2), 175-180 (1995).
  15. Messer, W. B., et al. Development and characterization of a reverse genetic system for studying dengue virus serotype 3 strain variation and neutralization. PLoS Negl Trop Dis. 6 (2), e1486 (2012).
  16. Kinney, R. M., et al. Avian virulence and thermostable replication of the North American strain of West Nile virus. J Gen Virol. 87 (Pt 12), 3611-3622 (2006).
  17. Chang, A. C., Cohen, S. N. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol. 134 (3), 1141-1156 (1978).
  18. Weger-Lucarelli, J., et al. Development and Characterization of Recombinant Virus Generated from a New World Zika Virus Infectious Clone. J Virol. 91 (1), (2017).
  19. Roberts, P. L., Lloyd, D. Virus inactivation by protein denaturants used in affinity chromatography. Biologicals. 35 (4), 343-347 (2007).
  20. Baer, A., Kehn-Hall, K. Viral concentration determination through plaque assays: using traditional and novel overlay systems. J Vis Exp. (93), e52065 (2014).
  21. Weger-Lucarelli, J., et al. Development and Characterization of Recombinant Virus Generated from a New World Zika Virus Infectious Clone. J Virol. , (2016).
  22. Grubaugh, N. D., et al. Genetic Drift during Systemic Arbovirus Infection of Mosquito Vectors Leads to Decreased Relative Fitness during Host Switching. Cell Host Microbe. 19 (4), 481-492 (2016).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved