A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Toll-like receptor (TLR) signaling plays an important role in the pathophysiology of many human inflammatory diseases, and regulating TLR responses by bioactive nanoparticles is anticipated to be beneficial in many inflammatory conditions. THP-1 cell-based reporter cells provide a versatile and robust screening platform for identifying novel inhibitors of TLR signaling.
Pharmacological regulation of Toll-like receptor (TLR) responses holds great promise in the treatment of many inflammatory diseases. However, there have been limited compounds available so far to attenuate TLR signaling and there have been no clinically approved TLR inhibitors (except the anti-malarial drug hydroxychloroquine) in clinical use. In light of rapid advances in nanotechnology, manipulation of immune responsiveness using nano-devices may provide a new strategy to treat these diseases. Herein, we present a high throughput screening method for quickly identifying novel bioactive nanoparticles that inhibit TLR signaling in phagocytic immune cells. This screening platform is built on THP-1 cell-based reporter cells with colorimetric and luciferase assays. The reporter cells are engineered from the human THP-1 monocytic cell line by stable integration of two inducible reporter constructs. One expresses a secreted embryonic alkaline phosphatase (SEAP) gene under the control of a promoter inducible by the transcription factors NF-κB and AP-1, and the other expresses a secreted luciferase reporter gene under the control of promoters inducible by interferon regulatory factors (IRFs).Upon TLR stimulation, the reporter cells activate transcription factors and subsequently produce SEAP and/or luciferase, which can be detected using their corresponding substrate reagents. Using a library of peptide-gold nanoparticle (GNP) hybrids established in our previous studies as an example, we identified one peptide-GNP hybrid that could effectively inhibit the two arms of TLR4 signaling cascade triggered by its prototypical ligand, lipopolysaccharide (LPS). The findings were validated by standard biochemical techniques including immunoblotting. Further analysis established that this lead hybrid had a broad inhibitory spectrum, acting on multiple TLR pathways, including TLR2, 3, 4, and 5. This experimental approach allows a rapid assessment of whether a nanoparticle (or other therapeutic compounds) can modulate specific TLR signaling in phagocytic immune cells.
Toll-like receptors (TLRs) are one of the key elements in the innate immune system contributing to the first line of defense against infections. TLRs are responsible for sensing invading pathogens by recognizing a repertoire of pathogen-associated molecular patterns (or PAMPs) and mounting defense reactions through a cascade of signal transduction1,2. There are 10 human TLRs identified; except TLR10 for which the ligand(s) remain unclear, each TLR can recognized a distinct, conserved group of PAMPs. For example, TLR2 and TLR4, primarily located on the cell surface, can detect lipoproteins and glycolipids from Gram-positive and Gram-negative bacteria, respectively; while TLR3, TLR7/8 and TLR9, mainly present in the endosomal compartments, can sense RNA and DNA products from viruses and bacteria3. When stimulated by PAMPs, TLRs trigger essential immune responses by releasing pro-inflammatory mediators, recruiting and activating effector immune cells, and coordinating subsequent adaptive immune events4.
The TLR signaling transduction can be simply categorized into two main pathways5,6. One is dependent upon the adaptor protein myeloid differentiation factor 88 (MyD88) — the MyD88-dependent pathway. All TLRs except TLR3 utilize this pathway to activate nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-associated protein kinases (MAPKs), leading to the expression of pro-inflammatory mediators such as TNF-α, IL-6 and IL-8. The second pathway utilizes TIR-domain-containing adaptor-inducing interferon-β (TRIF) — the TRIF-dependent or MyD88-independent pathway — to activate interferon (IFN) regulatory factors (IRFs) and NF-κB, resulting in the production of type I IFNs. Intact TLR signaling is critical to our daily protection from microbial and viral infections; defects in TLR signaling pathways can lead to immunodeficiency and are often detrimental to human health.7
However, TLR signaling is a 'double-edged sword' and excessive, uncontrolled TLR activation is harmful. Overactive TLR responses contribute to the pathogenesis in many acute and chronic human inflammatory diseases8,9. For instance, sepsis which is characterized by systemic inflammation and multi-organ injury, is primarily due to acute, overwhelming immune responses toward infections, with TLR2 and TLR4 playing a crucial role in the sepsis pathophysiology10,11,12. In addition, TLR5 has been found to contribute to chronic lung inflammation of patients with cystic fibrosis13,14. Moreover, dysregulated endosomal TLR signaling (e.g., TLR7 and TLR9) is strongly associated with the development and progression of several autoimmune diseases including systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA)15,16. These converging lines of evidence identify TLR signaling as a potential therapeutic target for many inflammatory diseases17.
Although pharmacological regulation of TLR responses is anticipated to be beneficial in many inflammatory conditions, unfortunately, there are currently very few compounds clinically available to inhibit TLR signaling9,17,18. This is partly due to the complexity and redundancy of the TLR pathways involved in the immune homeostasis and disease pathology. Therefore, searching for novel, potent therapeutic agents to target multiple TLR signaling pathways could bridge a fundamental gap, and overcome the challenge of advancing TLR inhibitors into the clinic.
In light of the rapid advances in nanoscience and nanotechnology, nanodevices are emerging as the next generation TLR modulators owing to their unique properties19,20,23. The nanoscale size allows these nano-therapeutics to have better bio-distribution and sustained circulation24,25,26. They can be further functionalized to meet the desired pharmacodynamic and pharmacokinetic profiles27,28,29. More excitingly, the bio-activity of these novel nanodevices arises from their intrinsic properties, which can be tailored for specific medical applications, rather than simply acting as a delivery vehicle for a therapeutic agent. For example, a high-density lipoprotein (HDL)-like nanoparticle was designed to inhibiting TLR4 signaling by scavenging the TLR4 ligand LPS23. In addition, we have developed a peptide-gold nanoparticle hybrid system, where the decorated peptides can alter the surface properties of the gold nanoparticles, and allow them to have various bio-activities30,31,32,33. This makes them a special class of drug (or "nano-drug") as the next generation nano-therapeutics.
In this protocol, we present an approach to identify a novel class of peptide-gold nanoparticle (peptide-GNP) hybrids that can potently inhibit multiple TLR signaling pathways in phagocytic immune cells32,33. The approach is based on commercially available THP-1 reporter cell lines. The reporter cells consist of two stable, inducible reporter constructs: one carries a secreted embryonic alkaline phosphatase (SEAP) gene under the control of a promoter inducible by the transcription factors NF-κB and activator protein 1 (AP-1); the other contains a secreted luciferase reporter gene under the control of promoters inducible by interferon regulatory factors (IRFs). Upon TLR stimulation, the signal transduction leads to the activation of NF-κB/AP-1 and/or IRFs, which turns on the reporter genes to secret SEAP and/or luciferase; such events can be easily detected using their corresponding substrate reagents with a spectrophotometer or luminometer. Using this approach to screen our previously established library of peptide-GNP hybrids, we identified lead candidates that can potently inhibit TLR4 signaling pathways. The inhibitory activity of the lead peptide-GNP hybrids was then validated using another biochemical approach of immunoblotting, and evaluated on other TLR pathways. This approach allows for fast, effective screening of novel agents targeting TLR signaling pathways.
Access restricted. Please log in or start a trial to view this content.
1. Preparation of Cell Culture Media and Reagents
2. Culture of THP-1 reporter cell-derived macrophages
3. Screening for Potential TLR4 Nano-inhibitors Using the Reporter Cells
NOTE: Since TLR4 signaling utilizes both MyD88-dependent and TRIF-dependent pathways, it is selected as the primary target to encompass a wide range of TLR signaling pathways. THP-1-XBlue reporter cells are used to mainly examine the NF-κB/AP-1 activation while THP-1-Dual cells are for IRF activation from the TRIF-dependent signal transduction.
4. Validating the Inhibitory Effect of the Potential Candidates
NOTE: To confirm the inhibitory effect of the potential candidates from the screening, two approaches are employed. One is to examine the dose responses of the stimulants (LPS) at a fixed hybrid concentration (or the other way around); the other is to directly look at the inhibition on the NF-κB/AP-1 and IRF3 signals via immunoblotting.
5. Evaluating the TLR Specificity
NOTE: To investigate the TLR specificity of the lead peptide-GNP hybrid, other TLR signaling pathways are tested, including TLR2, TLR3 and TLR5. TLR7, 8 and 9 are excluded because the THP-1 derived macrophages do not respond well to the stimulation of these TLRs due to the lack of TLR7, 8 and 9 expression in macrophages34.
Access restricted. Please log in or start a trial to view this content.
The overall experimental approach is illustrated in Figure 1. The two THP-1 reporter cell lines, THP-1-XBlue and THP-1-Dual, are used to fast screen the TLR responses by probing the activation of NF-κB/AP-1 and IRFs, respectively. The activation of NF-κB/AP-1 can be detected by the SEAP colorimetric assay, whereas IRF activation is monitored by luciferase luminescence. The monocytic THP-1 cells can be easily derived into macrophages to screen the na...
Access restricted. Please log in or start a trial to view this content.
Since TLRs are involved in the pathogenesis of many inflammatory diseases, they have emerged as therapeutic targets for the modulation of immune responses and inflammatory conditions. However, the clinical development of therapeutics to inhibit TLR signaling pathways has had limited success to date. The antimalarial drug hydroxychloroquine which inhibits TLR7 and TLR9 is in clinical use35,36. Similarly, only a limited number of compounds have progressed to c...
Access restricted. Please log in or start a trial to view this content.
The authors have nothing to disclose.
The authors would like to acknowledge the support from the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (H.Y.), the starting fund from Shanghai First People's Hospital (H.Y.), Gaofeng Clinical Medicine Grant support from Shanghai Jiaotong University School of Medicine (H.Y.), and the funding from the Crohn's and Colitis Foundation of Canada (CCFC) (S.E.T. and H.Y.).
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
THP-1-XBlue reporter cell | InvivoGen | thpx-sp | keep cell culture passage under 20 |
THP-1-Dual repoter cell | InvivoGen | thpd-nfis | keep cell culture passage under 20 |
RPMI-1640 (no L-glutamine) | GE Health Care | SH30096.02 | Warm up to 37 °C before use; add supplements to make a complete medium R10 |
Fetal bovine serum (qualified) | Thermo Fisher Scientific | 12484028 | Heat inactivated; 10% in RPMI-1640 |
L-glutamine | Thermo Fisher Scientific | SH30034.02 | 2 mM in the complete medium R10 |
Sodium pyruvate | Thermo Fisher Scientific | 11360-070 | 1 mM in the complete medium R10 |
Dulbecco's phosphate buffered saline, 1X, without calcium, magnesium | GE Health Care | SH30028.02 | Use for cell washing and reagent preparation |
QUANTI-Blue | InvivoGen | rep-qb1 | SEAP substrate |
QUANTI-Luc | InvivoGen | rep-qlc2 | Luciferase substrate |
Zeocin | InvivoGen | ant-zn-1 | Selection antibiotics for reporter cells |
Blasticidin | InvivoGen | anti-bl-1 | Selection antibiotics for reporter cells |
Dimethyl sulfoxide (DMSO) for molecular biology | Sigmal-Aldrich | D8418-100ML | Use for reagent preparation |
Phorbol 12-myristate 13-acetate (PMA) for molecular biology | Sigmal-Aldrich | P1585-1MG | Use for cell differentiation |
Lipopolysaccharide (LPS) from E. coli K12 | InvivoGen | tlrl-eklps | TLR4 ligand |
Pam3CSK4 | InvivoGen | tlrl-pms | TLR2/1 ligand |
Poly (I:C) HMW | InvivoGen | tlrl-pic | TLR3 ligand |
Flagellin from S. Typhimurium (FLA-ST), ultrapure | InvivoGen | tlrl-epstfla | TLR5 ligand |
SpectraMax Plus 384 microplate reader | Molecular Devices | N/A | Read colorimetric assay |
Infinite M200 Pro multimode microplate reader with injectors | Tecan | N/A | Read luminiscience |
Microfuge 22R centrifuge | Beckman Coulter | N/A | Temperature controlled micro-centrifugator (up to 18,000 g) |
Allegra X-15R centrifuge | Beckman Coulter | N/A | Temperature controlled general purpose centrifugator (for cell culture use) |
Costar assay plate, 96-well white with clear flat bottom, tissue culure treated | Corning Costar | 3903 | Used for luminiscence assay |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved