A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
A protocol for the analysis of gels formed from the optoelectronic conjugated polymer poly(3-hexylthiophene-2,5-diyl) (P3HT) using small and ultra-small angle neutron scattering in both the presence and absence of illumination is presented.
We demonstrate a protocol to effectively monitor the gelation process of a high concentration solution of conjugated polymer both in the presence and absence of white light exposure. By instituting a controlled temperature ramp, the gelation of these materials can be precisely monitored as they proceed through this structural evolution, which effectively mirrors the conditions experienced during the solution deposition phase of organic electronic device fabrication. Using small angle neutron scattering (SANS) and ultra-small angle neutron scattering (USANS) along with appropriate fitting protocols we quantify the evolution of select structural parameters throughout this process. Thorough analysis indicates that continued light exposure throughout the gelation process significantly alters the structure of the ultimately formed gel. Specifically, the aggregation process of poly(3-hexylthiophene-2,5-diyl) (P3HT) nano-scale aggregates is negatively affected by the presence of illumination, ultimately resulting in the retardation of growth in conjugated polymer microstructures and the formation of smaller scale macro-aggregate clusters.
Conjugated polymers promise functional materials that can be utilized in a broad range of devices, such as organic light emitting diodes, organic semiconductors, chemical sensors, and organic photovoltaics.1,2,3,4,5,6 A crucial aspect of the performance in these devices is the ordering and packing of the conjugated polymer in the solid state in the active layer.7,8,9,10,11,12,13,14 This morphology is largely pre-determined by both the conformation of the polymer chain in solution as well as the structures that evolve as these solutions are cast unto a substrate and the solvent is removed. By studying the structures present throughout a typical sol-gel transition of a model optoelectronic polymer in a suitable solvent, these systems can be effectively modeled and a quantitative glimpse into the self-assembly that occurs during material deposition can be obtained.15,16,17,18,19,20
Specifically, we examine the conjugated polymer benchmark P3HT in the solvent deuterated ortho-dichlorobenzene (ODCB), a polymer-solvent system which has seen extensive use due to its suitability for a variety of organic electronic device fabrication techniques.23,24,25 In this given solvent environment, P3HT chains begin to aggregate upon an appropriate environmental stimuli, such as temperature decrease or loss of solvent quality. The exact mechanism for this assembly process is under investigation, with one of the leading proposed pathways believed to be a gradual process where individual P3HT molecules π-stack to form lamellar nano-aggregates known as nanofibrils, which then themselves agglomerate to form larger micron scale macro-aggregates.24 Understanding these pathways and the resultant structures formed is key to properly predicting and influencing the formation of optimal device active layer morphologies.
Towards this ultimate goal of more precisely directing the formation of these active layer architectures, there exists a need to develop additional experimental and industrial methods to non-destructively alter conjugated polymer morphology in-situ. One relatively new methodology centers around the use of light exposure as an inexpensive means for altering polymer chain morphology, with both computational and experimental results pointing towards its feasibility.25,26,27 Recent work by our laboratory has indicated the existence of a light induced alteration of the conjugated polymer-solvent interaction in a dilute solution, leading to a notable change in polymer chain size upon illumination.30,31 Here, we present a protocol to continue this work by effectively monitoring the effects of exposing a much more concentrated conjugated polymer solution to direct light throughout a gelation process that is directed by a thermostat-controlled temperature ramp. We employ neutron scattering as it allows robust analysis of structural parameters of the polymer-solvent sol-gel system on length scales from angstroms to microns, an ability not possible through other more common rheological or spectroscopic instrumental methods.16,17,30,31 Thus, by comparing the properly analyzed small and ultra-small angle neutron data for the assembly of gels formed under illumination to identical data collected in complete darkness, structural differences brought on by illumination-driven effects can be comprehensively identified and quantified.
All handling of chemicals should be carried out with proper personal protective equipment and within a safety hood. All samples exposed to ionizing radiation should be handled under the supervision of the facilities radioactive control technicians. This protocol was performed by individuals who had completed appropriate radiation safety training.
1. Preparation of P3HT in d-ODCB Solutions
2. Neutron Scattering Experiments
3. Data Reduction and Analysis
Through SANS and USANS experiments, the gelation process of P3HT in d-ODCB was effectively monitored from the dispersed solution state at 70 °C to a fully gelled state at 20 °C. These experiments were conducted in both complete darkness and under white light illumination. Figure 1 displays some example SANS reduced data curves from these experiments, with an example curve fit shown in Figure 2. From this data, the struc...
First, looking at the SANS data as a function of temperature, the increase in the Elliptical Cylinder Model scale factor indicates a marked increase in the amount of P3HT present in the nanofibril phase, which isconsistent with the progression of the gelation process. Simultaneously, the decrease in free chain Rg paired with an increase in Porod exponent reveals that the deteriorating thermodynamic conditions associated with temperature decrease are causing a chain collapse in the P3HT chains still present in ...
The authors have nothing to disclose.
The authors gratefully acknowledge the National Science Foundation (DMR-1409034) for support of this project. We also acknowledge the support of the National Institute of Standards and Technology, U.S. Department of Commerce, in providing the USANS facilities used in this work, where these facilities are supported in part by the National Science Foundation under Agreement No. DMR-0944772. The SANS experiments of this research were completed at ORNL's High Flux Isotope Reactor, which was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy.
Name | Company | Catalog Number | Comments |
M(106) poly(3-hexylthiophene-2,5-diyl) (P3HT) | Ossila | 104934-50-1 | Conjugated polymer |
deuterated 1,2 ortho-dichlorobenzene (ODCB) | Sigma Aldrich | AC321260050 | solvent |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved