A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Complex locomotion in naturalistic environments requiring careful coordination of the limbs involves regions of the parietal cortex. The following protocol describes the use of reversible cooling-induced deactivation to demonstrate the role of parietal area 5 in memory-guided obstacle avoidance in the walking cat.
On complex, naturalistic terrain, sensory information about an environmental obstacle can be used to rapidly adjust locomotor movements for avoidance. For example, in the cat, visual information about an impending obstacle can modulate stepping for avoidance. Locomotor adaptation can also occur independent of vision, as sudden tactile inputs to the leg by an expected obstacle can modify the stepping of all four legs for avoidance. Such complex locomotor coordination involves supraspinal structures, such as the parietal cortex. This protocol describes the use of reversible, cooling-induced cortical deactivation to assess parietal cortex contributions to memory-guided obstacle locomotion in the cat. Small cooling loops, known as cryoloops, are specially shaped to deactivate discrete regions of interest to assess their contributions to an overt behavior. Such methods have been used to elucidate the role of parietal area 5 in memory-guided obstacle avoidance in the cat.
On naturalistic, uneven terrain, sensory information about an obstacle, which can be acquired via vision or touch, can rapidly modify locomotion for avoidance. This careful coordination of stepping movements involves multiple cortical regions1,2. For example, areas of motor cortex3,4 and parietal cortex5,6,7 have been implicated during complex locomotor tasks such as obstacle avoidance. In quadrupedal animals, step modulations required for obstacle avoidance must extend to both the forelegs and hindlegs. If forward locomotion is delayed between the foreleg and hindleg obstacle clearance (which may arise as an animal treads carefully through a complex, naturalistic environment stalking prey), information about the obstacle maintained in the memory is used to guide the hindleg stepping over the obstacle once walking resumes.
Experimental techniques aimed to deactivate discrete cortical areas can be used to study cortical contributions to memory-guided obstacle locomotion. Cooling-induced cortical deactivation provides a reversible, reliable, and reproducible method for assessing cortical contributions to an overt behavior8. Cryoloops made from stainless steel tubing are shaped specific to the cortical area of interest, ensuring highly selective and discrete deactivation of loci. Once implanted, chilled methanol pumped through the lumen of a cryoloop cools the region of cortex directly beneath the loop to <20 °C. Below this critical temperature, synaptic transmission is inhibited in the region of the cortex directly beneath the loop. Such deactivation can be reversed simply by ceasing the flow of methanol. This method has been used to study cortical contributions to sensory processing and behaviors9,10,11,12,13,14,15,16,17, as well as the motor control of saccadic eye movements18 and memory-guided obstacle locomotion19.
The purpose of this protocol is to use reversible cooling-induced deactivations to assess the involvement of the parietal cortical areas for locomotor coordination in the cat. Specifically, memory-guided obstacle locomotion was examined with or without active parietal cortex. These methods have been used to successfully demonstrate the role of parietal area 5 in memory-guided obstacle avoidance in the walking cat19.
All procedures were conducted in compliance with the National Research Council's Guide for the Care and Use of Laboratory Animals (eighth edition; 2011) and the Canadian Council on Animal Care's Guide to the Care and Use of Experimental Animals (1993), and were approved by the University of Western Ontario Animal Use Subcommittee of the University Council on Animal Care.
The following procedure can be applied to experiments studying cortical contributions to locomotor control in the walking cat.
1. Apparatus
2. Training Procedures
NOTE: For successful data acquisition, a period of training preceding behavioral testing ensures that each animal is properly acclimated to the testing room and apparatus. Repeated exposure to a novel environment will aid in reducing startling or other stressful behaviors. Acclimation may vary between animals and may require 1-2 months of training. Initial acclimation sessions may be up to 5 min in length depending on the focus and motivation of the animal to eat. Subsequent sessions should aim to increase the duration of time that the animal is motivated to work (typically around 20-25 min).
3. Behavioral Training and Testing Protocol
NOTE: The obstacle memory is assessed in two paradigms: a visually-dependent obstacle memory task, and a tactile-dependent obstacle memory task. Both paradigms should be used during initial training and subsequent testing.
4. Video Analyses
NOTE: To assess obstacle memory, analyses during initial training and subsequent testing after cooling loop implantation involve quantifying the peak step height, step clearance, and the horizontal distance between the toe and obstacle at the peak of each step for both visual and tactile paradigms (Figure 2C).
5. Cooling Loop (Cryoloop) Implantation
6. Cortical Cooling Protocol
7. Verifying the Extent of Cooling
This protocol has been successfully used to examine parietal cortex contributions to obstacle memory in the walking cat19. In this study, cryoloops were implanted bilaterally over parietal areas 5 and 7 in three adult (>6 months of age) female cats (Figure 5A). Animals were assessed in the tactile obstacle memory paradigm in the absence of cooling (warm, control condition), or when area 5 or 7 was bilaterally deactivated.
The described paradigm employs cooling-induced deactivations of discrete cortical areas using the cryoloop in order to study memory-guided obstacle locomotion in the cat. The visual and tactile obstacle memory paradigms are fairly simple for animals to execute as they exploit naturalistic locomotor behaviors that occur with minimal effort when an animal is motivated to follow a moving food source. Thus, the majority of the training period is devoted to acclimating the animal the testing room and cooling equipment. Most a...
The authors have nothing to disclose.
We gratefully acknowledge the support of the Canadian Institutes of Health Research, Natural Science and Engineering Research Council of Canada (NSERC), and the Canada Foundation for Innovation. C.W. was supported by an Alexander Graham Bell Canada Graduate Scholarship (NSERC).
Name | Company | Catalog Number | Comments |
Camera | IDS Imaging Development Systems GmbH | Model: UI-5240CP-C-HQ | |
Intake tubing | Restek | 25306 | Unflanged end is submerged in the methanol reservoir while the flanged end is connected to the pump |
Pump | Fluid Metering, Inc. | Model: QG 150 | |
Nalgene Dewar vacuum flask | Sigma-Aldrich | F9401 | |
Teflon tubing | Ezkem | A051754 | |
Microprobe thermometer | Physitemp | Model: BAT-12 | |
Flanged tube end fittings | Valco Instruments Co. Inc. | CF-1BK | Assorted colours available for colour coding. Packages include the same number of washers as fittings |
Washers | Valco Instruments Co. Inc. | CF-W1 | Extra washers |
Flanging kit | Pro Liquid GmbH | 201553 | |
Tubing connector | Restek | 25323 | |
Tubing cutter | Restek | 25069 | |
Male thermocouple connector | Omega | SMPW-T-M | Used to make cable connection to thermometer |
Thermocouple wire | Omega | PP-T-24S | Used to make cable connection to thermometer |
MATLAB | MathWorks | n/a |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved