A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
This article outlines a protocol for the detection of one or more plasma and/or intracellular membrane proteins using Ground State Depletion (GSD) super-resolution microscopy in mammalian cells. Here, we discuss the benefits and considerations of using such approaches for the visualization and quantification of cellular proteins.
Advances in fluorescent microscopy and cell biology are intimately correlated, with the enhanced ability to visualize cellular events often leading to dramatic leaps in our understanding of how cells function. The development and availability of super-resolution microscopy has considerably extended the limits of optical resolution from ~250-20 nm. Biologists are no longer limited to describing molecular interactions in terms of colocalization within a diffraction limited area, rather it is now possible to visualize the dynamic interactions of individual molecules. Here, we outline a protocol for the visualization and quantification of cellular proteins by ground-state depletion microscopy for fixed cell imaging. We provide examples from two different membrane proteins, an element of the endoplasmic reticulum translocon, sec61β, and a plasma membrane-localized voltage-gated L-type Ca2+ channel (CaV1.2). Discussed are the specific microscope parameters, fixation methods, photo-switching buffer formulation, and pitfalls and challenges of image processing.
Cellular signaling reactions translate changing internal and external environments to initiate a cellular response. They regulate all aspects of human physiology, serving as the foundation for hormone and neurotransmitter release, the heartbeat, vision, fertilization, and cognitive function. Disruption of these signaling cascades can have severe consequences in the form of pathophysiological conditions including cancer, Parkinson's, and Alzheimer's disease. For decades, biological and medical investigators have successfully used fluorescent proteins, probes, and biosensors coupled with fluorescence microscopy as the primary tools to understand the precise spatial and temporal organization of these cellular signals.
The strengths of optical techniques such as epifluorescence, confocal, or total internal reflection fluorescence (TIRF) microscopy are their sensitivity, speed, and compatibility with live cell imaging, while the major limitation is their diffraction-limited resolution, meaning structures or protein complexes smaller than 200-250 nm cannot be resolved. With the theoretical and practical development of deterministic super-resolution (e.g., stimulated emission depletion microscopy (STED1), structured illumination microscopy (SIM2) or stochastic super-resolution (e.g., photoactivated localization microscopy (PALM3), or ground state depletion (GSD4,5)), lateral and axial resolution in fluorescence microscopy has been extended beyond the diffraction barrier, to the order of tens of nanometers. Thus, investigators now have the unparalleled ability to visualize and understand how protein dynamics and organization translates to function at the near-molecular level.
Ground state depletion microscopy followed by individual molecule return (GSDIM), or simply GSD as it is known, circumvents the diffraction limit by reducing the number of simultaneously emitting fluorophores4,5. High energy laser light is used to excite the fluorophore-labelled sample, bombarding electrons with photons and increasing the probability they will undergo a 'spin-flip' and enter the triplet or 'dark-state' from the excited state4. This effectively depletes the ground state, hence the name 'ground state depletion'. In the triplet state, fluorophores do not emit photons and the sample appears dimmer. However, these fluorophores stochastically return to the ground state and can go through several photon emitting excited-to-ground state transitions before returning to the triplet state. With less fluorophores emitting at any given time, photon bursts emitted from individual fluorophores become spatially and temporally distinct from neighboring fluorophores. The burst of photons can be fit with a gaussian function, the calculated centroid of which corresponds to the position of the fluorophore with a localization precision that is dependent on the numerical aperture (NA) of the lens, the wavelength of light used for excitation and crucially, the number of photons emitted per fluorophore. One limitation of GSD is that, since only a subset of fluorophores actively emits at any time, thousands of images must be collected over several minutes to build up a complete localization map. The long acquisition time combined with the high laser power requirement, means that GSD is better suited to fixed rather than live samples.
This article, describes the preparation of fixed samples for super-resolution microscopy imaging of membrane and endoplasmic reticulum (ER)-resident proteins (for a list of necessary consumables and reagents see the Table of Materials). Examples of how this protocol can be easily adapted to quantify the size and degree of clustering of L-type voltage-gated Ca2+ channels (Cav1.2) in the sarcolemma of cardiac myocytes, or used to visualize the cellular distribution of the ER, are demonstrated. Understanding the distribution and organization of these cellular components is critically important in understanding the initiation, translation, and ultimately the function of many Ca2+-dependent signaling cascades. For example, Cav1.2 channels are fundamentally important for excitation-contraction coupling, while receptor-mediated Ca2+ release from the ER is perhaps the most ubiquitous signaling cascade in mammalian cells.
Access restricted. Please log in or start a trial to view this content.
1. Washing Glass Coverslips
2. Coating Glass Coverslips
NOTE: Steps in this section should be performed in a cell culture hood to prevent contamination.
3. Preparation of Cells
4. Plating Cells
5. Fixation of Cells
6. Blocking Non-specific Binding
7. Detection
8. Post-fixation (Optional Step)
9. Storage of Samples
10. GSD Super-resolution Imaging Photoswitching Buffer Preparation
11. Mounting Samples
12. Image Acquisition
13. Image Analysis
Access restricted. Please log in or start a trial to view this content.
As documented in the introduction, there are many different super-resolution microscopy imaging modalities. This protocol, focuses on GSD super-resolution imaging. Representative images and localization maps are shown in Figure 2 and Figure 3.
Figure 2 shows a COS-7 cell transfected with the ER protein, mCherry-Sec61β, and processed us...
Access restricted. Please log in or start a trial to view this content.
The recent explosion of technologies that allow imaging beyond the diffraction limit have offered new windows into the complexities of mammalian cell signaling in space and time. These technologies include STORM, STED, PALM, GSD, SIM, and their variants (e.g., dSTORM, FPALM). The ingenuity of the scientists behind these techniques has allowed us to circumvent the limitations imposed by laws of physics governing the diffraction of light. In spite of this huge accomplishment, each of these techniques makes some so...
Access restricted. Please log in or start a trial to view this content.
The authors have no competing interests to disclose.
This work was supported by a grant from the AHA to R.E.D. (15SDG25560035). Authors would like to acknowledge Dr. Fernando Santana for use of his Leica SR GSD 3D microscope, and Dr. Johannes Hell for kindly providing the FP1 antibody.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
KOH | Thermo Scientific | P250-500 | To clean coverglass |
#1.5 coverglass 18 x 18 mm | Marienfeld Superior | 0107032) | To grow/process/image cells |
10x PBS | Thermo Scientific | BP3994 | Dilute to 1x with de-ionized water |
Poly-L-Lysine | Sigma | P4832 | Aids with cell adhesion to cover glass |
laminin | Sigma | 114956-81-9 | Aids with cell adhesion to cover glass |
Medium 199 | Thermo Scientific | 11150-059 | Ventricular myocyte culture media |
DMEM 11995 | Gibco | 11995 | Cell culture media |
Fetal bovine Serum (FBS) | Thermo Scientific | 10437028 | Media supplement |
Penicillin/streptomycin | Sigma | P4333 | Media supplement |
0.05% trypsin-EDTA | Corning | 25-052-CL | Cell culture solution |
Lipofectamine 2000 | Invitrogen | 11668-019 | Transient transfection reagent |
Ca2+-free PBS | Gibco | 1419-144 | Cell culture |
100 % Methanol | Thermo Fisher Scientific | A414-4 | Cell Fixation |
Paraformaldehyde | Electron Microscopy Sciences | 15710 | Cell Fixation |
Glutaraldehyde | Sigma Aldrich | SLBR6504V | Cell Fixation |
SEAblock | Thermo Scientific | 37527 | BSA or other blocking solution alternatives exist |
Triton-X 100 | Sigma | T8787 | Detergent to permeabilize cells |
Rabbit anti-CaV1.2 (FP1) | Gift | N/A | Commercial anti-CaV1.2 antibodies exist such as Alomone Labs Rb anti-CaV1.2 (ACC-003) |
Mouse monoclonal anti-RFP | Rockland Inc. | 200-301-379 | Primary antibody |
Alexa Fluor 647 donket anti-rabbit IgG (H+L) | Invitrogen (Thermo Scientific) | A31573 | Secondary antibody |
Alexa Fluor 568 goat anti-mouse IgG (H+L) | Invitrogen (Thermo Scientific) | A11031 | Secondary antibody |
Sodium azide | Sigma | S2002 | Prevents microbial growth for long term storage of samples |
Catalase | Sigma | C40 | Photoswitching buffer ingredient |
Glucose oxidase | Sigma | G2133 | Photoswitching buffer ingredient |
Tris | Sigma | T6066 | Photoswitching buffer ingredient |
beta-Mercaptoethylamin hydrochloride | Fisher | BP2664100 | Photoswitching buffer ingredient |
β-mercaptoethanol | Sigma | 63689 | Photoswitching buffer ingredient |
NaCl | Fisher | S271-3 | Photoswitching buffer ingredient |
Dextrose | Fisher | D14-212 | Photoswitching buffer ingredient |
Glass Depression slides | Neolab | 1 – 6293 | To mount samples |
Twinsil | Picodent | 13001000 | To seal coverglass |
sec61β-mCherry plasmid | Addgene | 49155 | |
Leica SR GSD 3D microscope | Leica | ||
ImageJ | |||
Washing block solution | 20 % SEAblock in PBS | ||
Primary antibody incubation solution | 0.5 % Triton-X100, 20 % SEAblock, in PBS | ||
Secondary antibody incubation solution | 1:1000 in PBS |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved