JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Recently, we have developed a portable multimodality monitoring system for the monitoring of various physiological parameters in neurosurgical critical patients. Detailed protocols on how to use this multimodality monitoring system are presented here.

Abstract

Intracranial pressure (ICP) monitoring is now widely used in neurosurgical critical patients. Besides mean ICP value, the ICP derived parameters such as ICP waveform, amplitude of pulse (AMP), the correlation of ICP amplitude and ICP mean (RAP), pressure reactivity index (PRx), ICP and arterial blood pressure (ABP) wave amplitude correlation (IAAC), and so on, can reflect intracranial status, predict prognosis, and can also be used as guidance of proper treatment. However, most of the clinicians focus only on the mean ICP value while ignoring these parameters because of the limitations of the current devices. We have recently developed a multimodality monitoring system to address these drawbacks. This portable, user-friendly system will use a data collecting and storing device to continuously acquire patients' physiological parameters first, i.e., ABP, ICP, and oxygen saturation, and then analyze these physiological parameters. We hope that the multimodality monitoring system will be accepted as a key measure to monitor physiological parameters, to analyze the current clinical status, and to predict the prognosis of the neurosurgical critical patients.

Introduction

ICP monitoring is widely used to evaluate intracranial status in neurosurgery department, especially in neurosurgical critical patients1,2,3. Besides mean ICP value, the ICP derived parameters such as ICP waveform, AMP, RAP, PRx, IAAC, and so on, can reflect the status of intracerebral circulation, cerebrospinal compensatory reserve, and brain compliance4,5,6,7,8,9,10,11,12,13. They can be indicative of impending neurological deterioration and even outcome of patients14,15,16,17,18. They can also be used as guidance of proper treatment19. However, most of the clinicians focus only on the mean ICP value while ignoring these parameters. This is partly because there are few specific devices that are suitable for clinicians in their daily clinical work.

To address these drawbacks, we have recently developed a multimodality monitoring system. We use an automatic data collecting and storing device to continuously acquire patients' physiological information such as blood pressure, ICP, and oxygen saturation, and analyze these physiological parameters in order to reveal the current clinical status and, hopefully, predict the prognosis of the neurosurgical critical patients. This multimodality monitoring system has several advantages: (1) it can collect real-time data at high frequency, (2) it can record multiple parameters, i.e., ICP waveform, PRx, RAP, and IAAC, (3) it can achieve long term continuous monitoring, and (4) it is portable and easy to learn.

The objective of this article, therefore, is to show a detailed method of how to use the multimodality monitoring system to record various physiological parameters in neurosurgical critical patients.

Protocol

This protocol was approved by the Institutional Review Board of Renji Hospital, Shanghai Jiaotong University School of Medicine.

1. Preparation of the Patient

NOTE: ICP sensor is placed in the patient by a surgical operation (Figure 1). The sensor is placed in the epidural space, subdural space, parenchyma, or ventricular system.

  1. Connect the ICP monitoring machine with the bedside monitor via a specific communication cable.
  2. Adjust the reference of patient's bedside monitor, so that the data from the bedside monitor are in accordance with the ICP monitoring machine.
  3. Perform an arterial line placement on patient's left or right radial artery20.
  4. Connect the arterial line with the baroreceptor.
  5. Connect the pressure transducer with patient's bedside monitor via a communication cable.
  6. Zero adjust the bedside monitor so that the measured blood pressure coincides with the actual value.

2. Recording of Physiological Parameters

  1. Connect the patient's bedside monitor with the data collecting and storing device via a network cable.
  2. Press the power button to turn on the data collecting device.
  3. Wait for a few seconds until the multimodality monitoring software runs automatically.
  4. Enter the information of the patient, including the name, ID, diagnosis, and initial Glasgow Coma Scale (GCS).
  5. Click the "Save and start monitoring" button to start data collecting and storing.
  6. Click the "Turn off" button on the screen at the end of the data acquisition (Figure 2).
  7. Enter the final GCS.

3. Parameter Analysis

  1. Dump the stored data to a U-disk through universal serial bus (USB) interfaces on the host.
  2. Enter a user name and password to log in to the analysis server.
  3. Click the "Create new record" button and select the data file in the U-disk to start uploading.
  4. Wait for around 10 to 20 min before the data are analyzed (depending on the data size).
  5. Click the "Detail" button of each record to see the result.
  6. Click the "Chart viewing" to see the final diagram.
  7. Drag the timeline to see more detail.
  8. Click the "scattergram" button to see the distribution of the parameters.

Results

This new multimodality monitoring system was applied on 22 neurosurgical critical patients (15 males). 12 of them (54.55%) had suffered from traumatic brain injury (TBI), 9 of them (40.91%) had intracranial hemorrhage and 1 of them (4.55%) had severe cerebral infarction. The total monitoring time is more than 1,900 h (about 88 h per patient). After successful surgery, we continuously monitored and analyzed their ICP, BP, CPP, PRx, RAP, and IAAC. Figure 3 show...

Discussion

This aim of this article is to introduce the new multimodality monitoring and analyzing system for neurosurgical critical patients, which can be used to monitor physiological parameters, analyze the current clinical status and, hopefully, predict the prognosis of the neurosurgical critical patients. Nowadays, the focus of ICP monitoring is mainly on the mean ICP value while ignoring other parameters, which may carry risks of inaccuracy or delay4,5,

Disclosures

No financial support was received.

Acknowledgements

We would like to acknowledge all the colleagues in the NICU for their work.

Materials

NameCompanyCatalog NumberComments
Bedside monitorPhilipsIntelliVue MP40 M8003AWith interfacing module
ICP monitoring machine Johnson & Johnson or Sophysa
Arterial cannulaBDREF682245
Pressure transducerHaisheng MedicalDBPT-0103
Data collection deviceShanghai HaojuNeumatic
ComputerRequires Windows operating system

References

  1. Hawthorne, C., Piper, I. Monitoring of intracranial pressure in patients with traumatic brain injury. Front Neurol. 5, 121 (2014).
  2. Cooper, D. J., et al. Decompressive craniectomy in diffuse traumatic brain injury. N Engl J Med. 364 (16), 1493-1502 (2011).
  3. Jiang, J. Y. Head trauma in China. Injury. 44 (11), 1453-1457 (2013).
  4. Hu, X., Xu, P., Asgari, S., Vespa, P., Bergsneider, M. Forecasting ICP elevation based on prescient changes of intracranial pressure waveform morphology. IEEE Trans Biomed Eng. 57 (5), 1070-1078 (2010).
  5. Di Ieva, A., Schmitz, E. M., Cusimano, M. D. Analysis of intracranial pressure: past, present, and future. Neuroscientist. 19 (6), 592-603 (2013).
  6. Czosnyka, M., et al. Intracranial pressure: more than a number. Neurosurg Focus. 22 (5), 10 (2007).
  7. Lu, C. W., et al. Complexity of intracranial pressure correlates with outcome after traumatic brain injury. Brain. 135 (8), 2399-2408 (2012).
  8. Nucci, C. G., et al. Intracranial pressure wave morphological classification: automated analysis and clinical validation. Acta Neurochir (Wien). 158 (3), 581-588 (2016).
  9. Eide, P. K., Sorteberg, W. Association among intracranial compliance, intracranial pulse pressure amplitude and intracranial pressure in patients with intracranial bleeds. Neurol Res. 29 (8), 798-802 (2007).
  10. Czosnyka, M., Czosnyka, Z. H., Whitfield, P. C., Donovan, T., Pickard, J. D. Age dependence of cerebrospinal pressure-volume compensation in patients with hydrocephalus. J Neurosurg. 94 (3), 482-486 (2001).
  11. Howells, T., Lewen, A., Skold, M. K., Ronne-Engstrom, E., Enblad, P. An evaluation of three measures of intracranial compliance in traumatic brain injury patients. Intensive Care Med. 38 (6), 1061-1068 (2012).
  12. Schuhmann, M. U., et al. Value of overnight monitoring of intracranial pressure in hydrocephalic children. Pediatr Neurosurg. 44 (4), 269-279 (2008).
  13. Czosnyka, M., Pickard, J. D. Monitoring and interpretation of intracranial pressure. J Neurol Neurosurg Psychiatry. 75 (6), 813-821 (2004).
  14. Sorrentino, E., et al. Critical thresholds for cerebrovascular reactivity after traumatic brain injury. Neurocrit Care. 16 (2), 258-266 (2012).
  15. Carrera, E., et al. What shapes pulse amplitude of intracranial pressure. J Neurotrauma. 27 (2), 317-324 (2010).
  16. Eide, P. K., et al. Pressure-derived versus pressure wave amplitude-derived indices of cerebrovascular pressure reactivity in relation to early clinical state and 12-month outcome following aneurysmal subarachnoid hemorrhage. J Neurosurg. 116 (5), 961-971 (2012).
  17. Lazaridis, C., et al. Patient-specific thresholds of intracranial pressure in severe traumatic brain injury. J Neurosurg. 120 (4), 893-900 (2014).
  18. Czosnyka, M., et al. Monitoring and interpretation of intracranial pressure after head injury. Acta Neurochir Suppl. 96, 114-118 (2006).
  19. Steiner, L. A., et al. Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care Med. 30 (4), 733-738 (2002).
  20. Tegtmeyer, K., Brady, G., Lai, S., Hodo, R., Braner, D. Videos in Clinical Medicine. Placement of an arterial line. N Engl J Med. 354 (15), 13 (2006).
  21. Chesnut, R. M., et al. A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J Med. 367 (26), 2471-2481 (2012).

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Physiological ParametersNeurosurgical Critical PatientsICP MonitoringArterial LineBlood PressureData AcquisitionData AnalysisLong term Continuous MonitoringGCSMulti modal Monitoring

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved