A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Understanding the ecosystem services and processes provided by vernal ponds and the impacts of anthropogenic activities on their ability to provide these services requires intensive hydrologic monitoring. This sampling protocol using in-situ monitoring equipment was developed to understand the impact of anthropogenic activities on water levels and quality.
Vernal ponds, also referred to as vernal pools, provide critical ecosystem services and habitat for a variety of threatened and endangered species. However, they are vulnerable parts of the landscapes that are often poorly understood and understudied. Land use and management practices, as well as climate change are thought to be a contribution to the global amphibian decline. However, more research is needed to understand the extent of these impacts. Here, we present methodology for characterizing a vernal pond's morphology and detail a monitoring station that can be used to collect water quantity and quality data over the duration of a vernal pond's hydroperiod. We provide methodology for how to conduct field surveys to characterize the morphology and develop stage-storage curves for a vernal pond. Additionally, we provide methodology for monitoring the water level, temperature, pH, oxidation-reduction potential, dissolved oxygen, and electrical conductivity of water in a vernal pond, as well as monitoring rainfall data. This information can be used to better quantify the ecosystem services that vernal ponds provide and the impacts of anthropogenic activities on their ability to provide these services.
Vernal ponds are temporary, shallow wetlands that typically contain water from fall to spring and are often dry during the summer months. The inundation period of vernal ponds, generally referred to as the hydroperiod, is primarily controlled by precipitation and evapotranspiration1.
Vernal ponds can also be referred to as vernal pools, ephemeral ponds, temporary ponds, seasonal ponds, and geographically isolated wetlands2. In the northeastern United States, vernal ponds are most often characterized by the critical habitat they provide for amphibians, serving as the breeding grounds and providing support during early life stages (i.e., tadpoles) and metamorphosis. In California, vernal ponds are characterized by the unique vegetation and endangered plant species that they support2.
These habitats are increasingly threatened due to land use and climate change, and amphibian populations are experiencing a significant global decline largely due to anthropogenic activities3,4. Water quality concerns due to pollution are also thought to be contributing factors in recent amphibian declines globally5. Furthermore, recent studies have revealed an increased occurrence of intersex characteristics in frogs inhabiting vernal ponds impacted by human wastewater6. There is therefore a need to conduct more intensive monitoring of both natural and impacted vernal ponds to better understand the contributors to the global amphibian decline.
The physical parameters of vernal ponds that need to be measured and monitored include the pond morphology and water level. The morphology is the geometry of the pond, and is developed by conducting a survey to determine changes in elevation across the pond. The survey data are then used to establish a stage-storage curve, which enables the volume of the pond to be estimated based on water level measurements. Because the water level in a vernal pond is heavily influenced by precipitation, measurements should be made at a high temporal resolution to best understand both short (i.e., on the order of minutes to hours) and long-term fluctuations (i.e., on the order of months to years) in water level.
Water quality parameters of interest that are known to affect the function of vernal ponds include temperature, pH, electrical conductivity, dissolved oxygen levels, and oxidation-reduction potential. These parameters can all be measured in situ with relatively cheap technologies and sensor networks. Some water quality parameters of interest such as some nutrient species (i.e., total Kjeldahl nitrogen) and other pollutants (i.e., emerging contaminants) require samples to be collected and brought to a laboratory for processing and analysis.
Critical parameters that affect the ability of vernal ponds to function as appropriate habitat for breeding amphibians and the early developmental stages of tadpoles include water level, pH, and dissolved oxygen concentration. Compared to vernal ponds located in relatively pristine landscapes, elevated levels of electrical conductivity, higher pH, reduced dissolved oxygen concentrations, and high nutrient concentrations have been recorded in vernal ponds impacted by anthropogenic activities2,7. Reducing or anaerobic conditions may occur in these habitats, particularly ones that are impacted by anthropogenic activities. This can cause a shift in the microbiological community, altering the nutrient cycling within the pond and potentially reducing degradation of endocrine disrupting compounds and other pollutants8,9.
The goal of this paper is to provide information for how to establish a station for monitoring the water quantity and quality of a vernal pond. This method can be applied to any vernal pond, but requires access to the site (i.e., the site must be on public property or have land-owner permission to install equipment).
1. Conducting a Survey of a Vernal Pond Morphology
2. Determining the Vernal Pond's Stage-Storage Curve
NOTE: Each vernal pond will have a unique relationship between water level and water volume in the pond. This relationship is called the stage-storage curve.
3. Installing a Monitoring Station
NOTE: Sensors for parameters of interest for this study included a pressure transducer (measures both water level and temperature), dissolved oxygen concentration, oxidation-reduction potential, electrical conductivity, pH, and a tipping bucket rain gauge. The pH probe, dissolved oxygen sensor, and oxidation-reduction probe must be calibrated in the lab prior to deployment per the sensor's user manual. Here, a central datalogger (programmed to record data at 15 min intervals) is selected, to which all sensors are connected during deployment. A viable alternative scenario would be that each of the sensors is autonomous and do not need one central datalogger, since each sensor would record its own data.
Vernal ponds can exhibit a wide range of morphology, with profiles ranging from convex to straight slope to concave. Example morphology for a vernal pond in Central Pennsylvania is shown in Figure 1, along with the results of the stage-storage curve for this pond (Figure 2, Table 1). Maximum pond depth is not a strong indicator of surface area, as hydroperiod has only a weak correlation with pond morphology
Significance with Respect to Existing Methods
While monitoring of streams has well-established methodologies developed by the United States Geological Survey (USGS), no such widespread monitoring program exists for understanding vernal pond dynamics. This protocol seeks to provide guidance for how to begin to approach hydrologic and water quality monitoring research at a vernal pond site, with the goal of understanding how physical and chemical factors may be changing over tim...
The authors have nothing to disclose.
The authors would like to thank the Pennsylvania State University Office of Physical Plant (OPP) for funding to support this research. Additionally, we would like to thank Drs. Elizabeth W. Boyer, David A. Miller, and Tracy Langkilde at The Pennsylvania State University for their collaborative support of this project.
Name | Company | Catalog Number | Comments |
CR1000 | Campbell Scientific | 16130-23 | Measurement and Control Datalogger |
ENC12/14-SC-MM | Campbell Scientific | 30707-88 | Weatherproof Enclosure Box (12" x 14") |
CS451-L | Campbell Scientific | 28790-82 | Pressure Transducer |
CM305-PS | Campbell Scientific | 20570-3 | 47" Mounting Pole (Tripod) |
TE525-L | Texas Electronics | 7085-111 | Tipping Bucket Rain Gauage (0.01 inch) |
CS511-L | Campbell Scientific | 26995-41 | Dissolved Oxygen Sensor |
SP10 | Campbell Scientific | 5278 | 10 W Solar Panel |
PS150-SW | Campbell Scientific | 29293-1 | 12 V Power Supply with Voltage Regulator & 7 Ah Rechargeable Battery |
CSIM11-ORP | Wedgewood Analytical | 22120-72 | Oxidation-reduction potential probe |
CSIM11-L | Wedgewood Analytical | 22119-151 | pH probe |
CS547A-L | Campbell Scientific | 16725-229 | Water conductivity probe |
A547 | Campbell Scientific | 12323 | CS547(A) Conductivity Interface |
CST/berger SAL 'N' Series Automatic Level Package | CST/berger | 55-SLVP32D | Automatic Survey Level, Tripod, and 8' survey rod |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved