JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This manuscript describes a protocol to isolate and culture osteoclasts in vitro from mouse bone marrow, and to study the role of the mammalian/mechanistic target of rapamycin complex 1 in osteoclast formation.

Abstract

Osteoclasts are unique bone-resorbing cells that differentiate from the monocyte/macrophage lineage of bone marrow. Dysfunction of osteoclasts may result in a series of bone metabolic diseases, including osteoporosis. To develop pharmaceutical targets for the prevention of pathological bone mass loss, the mechanisms by which osteoclasts differentiate from precursors must be understood. The ability to isolate and culture a large number of osteoclasts in vitro is critical in order to determine the role of specific genes in osteoclast differentiation. Inactivation of the mammalian/mechanistic target of rapamycin complex 1 (TORC1) in osteoclasts can decrease osteoclast number and increase bone mass; however, the underlying mechanisms require further study. In the present study, a RANKL-based protocol to isolate and culture osteoclasts from mouse bone marrow and to study the influence of mTORC1 inactivation on osteoclast formation is described. This protocol successfully resulted in a large number of giant osteoclasts, typically within one week. Deletion of Raptor impaired osteoclast formation and decreased the activity of secretory tartrate-resistant acid phosphatase, indicating that mTORC1 is critical for osteoclast formation.

Introduction

Bone is an ever-changing organ and is remodeled by osteoblasts and osteoclasts throughout life. Osteoclasts are responsible for mineralized matrix resorption and osteoblasts synthesize and secrete new bone matrices1. The balance between bone resorption and bone formation is crucial for bone health including maintenance of bone mass and response to stimulation and injury. If this balance is disrupted, a series of bone metabolic diseases may occur, including osteoporosis and periodontal diseases. In these diseases, bone mass loss resulting from osteoclastic bone resorption exceeds the bone forming capacity of osteoblasts2,3. Thus, in order to develop pharmaceutical targets to treat skeletal disorders such as osteoporosis, it is critical to understand the generation and biology of osteoclasts4.

Osteoclasts are unique giant multinucleated cells located at or near the bone surface, and belong to the monocyte/macrophage family1. Ibbotson K. J. et al. reported a method to generate osteoclast-like cells in vitro with medium containing 1,25-dihydroxy-vitamin D35. The identification of macrophage-colony stimulating factor (M-CSF) and receptor activator for nuclear factor-κ B ligand (RANKL) as essential factors of osteoclast formation has dramatically increased the efficiency of osteoclastogenesis in vitro1,6,7. The ability to culture osteoclasts in vitro has improved our understanding of the generation and regulation of osteoclasts.

The mammalian/mechanistic target of rapamycin (mTOR) functions in two structurally and functionally distinct complexes, namely mTORC1 and mTORC28,9. The two multi-protein complexes are distinct from each other due to their different components and downstream substrates. mTORC1 contains the unique regulatory-associated protein of mTOR (Raptor), while mTORC2 contains the rapamycin-insensitive companion of mTOR (Rictor)9. mTORC1 can integrate and transmit important signals to regulate cell growth, proliferation and differentiation. Recently, we demonstrated that mTORC1 plays a key role in the network of catabolic bone resorption by deletion of Raptor to inactivate mTORC1 in osteoclasts10. However, the underlying mechanisms require further study. In the present study, a RANKL-based osteoclastogenic method was used to generate osteoclasts from bone marrow-derived macrophages (BMMs) of wild-type (WT) and RapCtsk mice, and to study the influence of mTORC1 inactivation on osteoclast formation.

Protocol

All procedures relating to the animals were performed according to the protocol approved by the Stanford Administrative Panel on Laboratory Animal Care (APLAC) and were approved by the Animal Care and Use Committee of the Shanghai Institute of Biochemistry and Cell Biology.

1. Preparation

  1. Generate osteoclast specific Raptor deletion mice (Raptorfl/fl; Ctsk-cre, hereafter RapCtsk) by mating Raptorfl/fl mice with Ctsk-cre mice. Use the Raptorfl/fl mice as the WT control in this study.
  2. Have a container with ice to keep isolated bone.
  3. Prepare culture medium.
    1. Prepare α-MEM culture medium by supplementing minimum essential medium alpha (α-MEM) with 1x glutamine, penicillin-streptomycin, and 10% fetal calf serum.
    2. Prepare bone marrow macrophage induction medium consisting of 50 mL of α-MEM medium and M-CSF at 20 ng/mL.
    3. Prepare osteoclast induction medium consisting of M-CSF and RANKL at 20 ng/mL, respectively, in 50 mL of α-MEM medium.
  4. Prepare the following buffers before TRAP staining.
    1. Prepare fix solution consisting of 6.5 mL of acetone, 2.5 mL of citrate solution and 0.8 mL of 37% (vol/vol) formaldehyde solution.
    2. Prepare TRAP staining solution.
      1. Prewarm deionized water to 37 °C.
      2. Add 100 µL of fast garnet GBC base solution and 100 µL of sodium nitrite solution into a 1.5-mL microtube and mix by gentle inversion for 30 s. Leave the mixture to stand for 2 min.
      3. Prewarm 9 mL of deionized water to 37 °C. Add 200 µL of diazotized fast garnet GBC base solution from step 1.4.2.2, 100 µL of naphthol AS-BI phosphate solution, 400 µL of acetate solution, and 200 µL of tartrate solution.
      4. Keep the TRAP staining mixture solution in a water bath at 37 °C.
  5. Prepare the following buffer before TRAP activity quantification of culture medium.
    1. Prepare tartrate buffer (50 mL): 2 mL of 0.33 M L-tartaric acid, 48 mL of 0.33 M sodium tartrate dibasic dehydrate. Adjust the pH value to 4.9.
    2. Prepare 4-Nitrophenyl phosphate disodium (pNPP) buffer (200 mL): 1.502 g of glycine, 41 mg of MgCl2, 27.2 mg of ZnCl2, and 180 mL of deionized water. Adjust the pH value to 10.4 with 3 M NaOH and the volume to 200 mL with deionized water.
    3. Prepare pNPP buffer with phosphatase substrate (for one 96-well plate): 49.37 mg of phosphatase substrate and 175 µL of pNPP buffer of step 1.5.2.
    4. Prepare substrate buffer (9 mL/96-well plate): 6.24 mL of deionized water, 360 μL of acetate solution, and 2.4 mL of tartrate buffer. Mix by vortex and preheat at 37 °C before use.
    5. Add 90 μL of pNPP buffer with phosphatase substrate(1.5.3) to 9ml of preheated substrate buffer(1.5.4) to make a substrate mixture and vortex for 10 s.

2. Dissection (Day -1)

  1. Euthanize 3 one-month-old female WT and RapCtsk mice by CO2 separately. Perform CO2 inhalation with appropriate equipment by trained personnel.
  2. Immerse 6 mice in a beaker with 100 mL of 75% ethanol (vol/vol) for 5 min to prevent bacterial contamination and then place on a dissection board in a supine position. Make an incision at the distal of the tibia vertically and dissect the skin along the hind limb with ophthalmic scissors.
  3. Cut the articular ligament of the hip joint with scissors and dislocate the hind limbs from the trunk.
  4. Cut the articular ligament of the knee joint and carefully disassociate the tibia and femur from the knee joint. Gently remove the soft tissue with scissors.
  5. Place all bones of one genotype in of one mouse in each well of a six-well-plate with 2 mL of α-MEM on ice.
    NOTE: To preserve cell viability, the bone should be kept in these conditions for less than 1 h.

3. Isolation (Day -1)

  1. Fill one well of a six-well plate with 75% ethanol (3 mL) and the other 5 wells with α-MEM medium (3 mL).
  2. Put all bones of one genotype in the ethanol wash for 15 s and wash bones 5 times with α-MEM medium for 10 s each time.
  3. Cut off the epiphyses with the scissor and insert a 0.45-mm syringe needle into the bone cavity and flush marrow out with α-MEM medium into a 50-mL centrifuge tube.
  4. Flush the bone cavity using the same method from the other end of the bone. Repeat at least twice to wash the bone cavity thoroughly until the bone is pale.
  5. Centrifuge the bone marrow to obtain a cell pellet at 800 x g and 4 °C for 5 min. Aspirate the supernatant.
  6. Add 3 mL of red blood cell lysis buffer into the centrifuge tube and pipette gently to resuspend the bone marrow. Keep the centrifuge tube on ice for 8 min to lyse red blood cells.
  7. Add 6 mL of α-MEM medium into the centrifuge tube to stop cell lysis. Centrifuge at 500 x g and 4 °C for 10 min and aspirate the supernatant.
  8. Resuspend in 3 mL of α-MEM culture medium and place the cells into a six-well plate (generally one mouse per well).
  9. Incubate at 37 °C in a 5% CO2 incubator overnight.

4. Plating (Day 0)

  1. Transfer the supernatant to a 15 mL centrifuge tube to collect the unattached cells the next morning.
  2. Centrifuge at 800 x g and 4 °C for 5 min and aspirate the supernatant.
  3. Resuspend in 4 mL of α-MEM culture medium.
  4. Take 20 µL of the cell solution and mix with 20 µL of Trypan Blue. Add 10 µL of the mixture to the counting chamber and obtain the cell count per mL of solution.
  5. Add an appropriate volume of α-MEM culture medium to obtain a cell solution of 500,000 cells/mL.
  6. Add 500 µL and 50 µL of bone marrow macrophage induction medium into each well of a 24-well plate and 96-well plate, respectively.
  7. Add 500 µL and 50 µL of cell solution into each well of a 24-well plate and 96-well plate, respectively.
  8. Incubate at 37 °C in a 5% CO2 incubator for 3 days.

5. Differentiation (Days 3-7)

  1. Three days after plating, collect 50 µL medium from each well of the 96-well-plate and freeze at -20 °C, and then aspirate the residual medium.
  2. Add 1 mL and 100 µL osteoclast induction medium into each well of a 24-well plate and a 96-well plate, respectively.
  3. Incubate at 37 °C for 2 days.
  4. Collect 50 µL of medium from each well and aspirate the residual medium.
  5. Add osteoclast induction medium into each well.
  6. Incubate at 37 °C for 1 day.
    NOTE: At this time point, large, multinucleated osteoclasts should be seen under an inverted microscope (Figure 2A).
  7. If osteoclasts are not seen, change the osteoclast induction medium and observe daily until osteoclasts are seen.
  8. Collect 50 µL of medium from each well of the 96-well plate after osteoclasts have formed.

6. Tartrate Resistant Acid Phosphatase (TRAP) Staining

NOTE: Mature osteoclasts may be present after 6-7 days of in vitro culture (step 4).

  1. Aspirate medium and wash gently 3 times with 1x PBS.
  2. Fix the cells in each well of the 96-well plate with 100 µL of fix solution for 30 s at room temperature.
  3. After fixation, aspirate the fix solution and wash gently 3 times with deionized water prewarmed to 37 °C. Aspirate deionized water.
  4. Add 100 µL of TRAP stain into each well of the 96-well plate and place the plate in an incubator at 37 °C for 30 min and shield from light.
  5. After staining, aspirate the TRAP stain and gently wash 3 times with deionized water.
  6. Image osteoclasts using an inverted microscope at 40X magnification.

7. TRAP Activity Quantification of Culture Medium

  1. Collect 30 µL culture supernatant from each well of the 96-well plate from step 5.1, 5.4 and 5.8; Use 30 µL of non-cultured osteoclast induction medium as the negative control. Place the samples in a new 96-well plate.
  2. Add 90 μL of substrate mixture(1.5.5) into each well of the 96-well plate.
  3. Place the plate in an incubator at 37 °C for 1 h and shield from light.
  4. Stop the reaction by adding 50 µL of 3 M NaOH into each well of the 96-well plate.
  5. Measure theabsorbance at the wavelength of 405 nm.

8. Western Blotting

NOTE: After 6-7 days of in vitro culture in the 24-well plate, mature osteoclasts should be visible.

  1. Aspirate the medium.
  2. Wash gently with pre-cooled 1x PBS 3 times.
  3. Aspirate PBS.
  4. Add 100 µL of 1x SDS lysis buffer containing protease inhibitor cocktail.
  5. Heat lysates at 105 °C for 10 min and centrifuge at 12,000 × g and 4 °C for 10 min. Collect the supernatants containing proteins.
  6. Separate the lysates containing 30 µg of protein by 10% SDS-PAGE11 and then transfer to a polyvinylidene fluoride (PVDF) membrane.
  7. Block the membranes with 5% nonfat milk for 30 min.
  8. Incubate the membranes with anti-Raptor, anti-P-S6, anti-S6, anti-β-actin at 1:1,000 dilution in 5% nonfat milk at 4 °C overnight.
  9. Wash the membranes with Tris Buffered Saline with Tween-20 (TBST) for 10 min at room temperature.
  10. Repeat step 8.9 twice.
  11. Incubate the membranes with horseradish peroxidase (HRP)-conjugated anti-mouse or rabbit IgG antibodies at 1:5,000 dilution in 5% nonfat milk for 1 h at room temperature.
  12. Wash the membranes 3 times with TBST for 10 min at room temperature.
  13. For chemiluminescent detection, add western chemiluminescent HRP substrate on the membranes and incubate for 5 min at room temperature. Drain the excess substrate and expose the blots to X-ray film.

Results

Using the present protocol, a large number of giant osteoclasts were seen on day 6; if giant osteoclasts are not seen, one more day of osteoclast differentiation may be needed (Figure 1). Successful osteoclast formation was confirmed by TRAP staining (Figure 2A). Osteoclasts were giant wine red/purple cells with more than 3 nuclei. More than 250 osteoclasts were obtained in each well of the 96-well plate in WT BMMs (

Discussion

The osteoclastogenic assay is the most widely used method to isolate and culture osteoclasts in vitro12,13. While several RANKL-based osteoclast inductions have been described13,14,15, the present study described a protocol with some modifications based on the previous methods.

In the previous study, BMMs were plating immediately afte...

Disclosures

All authors state that they have no conflicts of interest.

Acknowledgements

The authors thank Dr. Minghan Tong and S. Kato for kindly providing reagents and mice. We thank the members of the Zou lab for useful discussions. This work was supported in part by grants from 973 Program from the Chinese Ministry of Science and Technology (MOST) [2014CB964704 and 2015CB964503], Clinical Research Program of 9th People's Hospital, Shanghai Jiao Tong University School of Medicine. Thanks for the help of Core Facility for Cell Biology and Core Facility for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences.

Materials

NameCompanyCatalog NumberComments
Raptorfl/fl miceThe Jackson Laboratory013188
Ctsk-cre micea gift from S. Kato, University of Tokyo, Tokyo, Japan
α-MEMCorning10-022-CVR
GlutamineGibico25030081
Penicillin streptomycinGibico15140122
Fetal calf serumBioInd04-001-1A
Recombinant mouse M-CSF proteinR&DQ3U4F9
Recombinant mouse RANKL proteinR&DQ3TWY5
RBC lysis bufferBeyotimeC3702
Trypan blueSigma-Aldrich302643
AcetoneShanghai Chemical Co. Ltd.
Citrate solutionSigma-Aldrich915
Formaldehyde solutionShanghai Chemical Co. Ltd.
Acid Phosphatase, Leukocyte (TRAP) KitSigma-Aldrich387A-1KT
Fast Garnet GBC Base solutionSigma-Aldrich3872
Sodium Nitrite SolutionSigma-Aldrich914
Naphthol AS-BI Phosphate SolutionSigma-Aldrich3871
Acetate solutionSigma-Aldrich3863
Tartrate solutionSigma-Aldrich3873
Dulbecco's phosphate-buffered salineCorning21-031-CVR
L-tartaric acidSigma-Aldrich251380
Sodium tartrate dibasic dehydrateSigma-Aldrichs4797
GlycineShanghai Chemical Co. Ltd.
MgCl2Shanghai Chemical Co. Ltd.
ZnCl2Shanghai Chemical Co. Ltd.
NaOHShanghai Chemical Co. Ltd.
Phosphatase substrateSigma-AldrichP4744
anti-RaptorCell Signaling Technology2280
anti-P-ribosomal protein S6 (S235/236)Cell Signaling Technology2317
anti-ribosomal protein S6Cell Signaling Technology2211
anti-β-actinSanta Cruz Biotechnologysc-130300
37% formaldehydeXilong scientific
polyvinylidene fluoride (PVDF) membraneBio-Rad
Western Chemiluminescent HRP Substrate (ECL)Millipore00000367MSDS
IX71Olympus
EnvisionPerkin Elmer
0.45-mm Syringe
Scissor
Mosquito forcep

References

  1. Boyle, W. J., Simonet, W. S., Lacey, D. L. Osteoclast differentiation and activation. Nature. 423 (6937), 337-342 (2003).
  2. Jaenisch, R., Bird, A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature Genetics. 33, 245-254 (2003).
  3. Feng, X., McDonald, J. M. Disorders of bone remodeling. Annu Rev Pathol. 6, 121-145 (2011).
  4. Boyce, B. F. Advances in osteoclast biology reveal potential new drug targets and new roles for osteoclasts. J Bone Miner Res. 28 (4), 711-722 (2013).
  5. Ibbotson, K. J., Roodman, G. D., McManus, L. M., Mundy, G. R. Identification and characterization of osteoclast-like cells and their progenitors in cultures of feline marrow mononuclear cells. J Cell Biol. 99 (2), 471-480 (1984).
  6. Lacey, D. L., et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 93 (2), 165-176 (1998).
  7. Wong, B. R., et al. TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J Biol Chem. 272 (40), 25190-25194 (1997).
  8. Zoncu, R., Efeyan, A., Sabatini, D. M. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 12 (1), 21-35 (2011).
  9. Bhaskar, P. T., Hay, N. The two TORCs and Akt. Dev Cell. 12 (4), 487-502 (2007).
  10. Dai, Q., et al. Inactivation of Regulatory-associated Protein of mTOR (Raptor)/Mammalian Target of Rapamycin Complex 1 (mTORC1) Signaling in Osteoclasts Increases Bone Mass by Inhibiting Osteoclast Differentiation in Mice. J Biol Chem. 292 (1), 196-204 (2017).
  11. Sambrook, J., Fritsch, E. F., Maniatis, T. . Molecular cloning: a laboratory manual. , (1989).
  12. Weischenfeldt, J., Porse, B. Bone Marrow-Derived Macrophages (BMM): Isolation and Applications. CSH Protoc. 2008, (2008).
  13. Bradley, E. W., Oursler, M. J. Osteoclast culture and resorption assays. Methods Mol Biol. 455, 19-35 (2008).
  14. Tevlin, R., et al. Osteoclast derivation from mouse bone marrow. J Vis Exp. (93), e52056 (2014).
  15. Xing, L., Boyce, B. F. RANKL-based osteoclastogenic assays from murine bone marrow cells. Methods Mol Biol. 1130, 307-313 (2014).
  16. Hsu, H., et al. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci U S A. 96 (7), 3540-3545 (1999).
  17. Underwood, J. C. From where comes the osteoclast?. J Pathol. 144 (4), 225-226 (1984).
  18. Wein, M. N., et al. Control of bone resorption in mice by Schnurri-3. Proc Natl Acad Sci U S A. 109 (21), 8173-8178 (2012).

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

OsteoclastRANKLMTORC1Bone MarrowIn Vitro CultureOsteoporosisCell IsolationCell Differentiation

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved