A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
This protocol demonstrates the induction of cerebral cavernous malformation disease in a mouse model and uses contrast enhanced micro computed tomography to measure lesion burden. This method enhances the value of established mouse models to study the molecular basis and potential therapies for cerebral cavernous malformation and other cerebrovascular diseases.
Mutations in the CCM1 (aka KRIT1), CCM2, or CCM3 (aka PDCD10) gene cause cerebral cavernous malformation (CCM) in humans. Mouse models of CCM disease have been established by tamoxifen induced deletion of Ccm genes in postnatal animals. These mouse models provide invaluable tools to investigate molecular mechanism and therapeutic approaches for CCM disease. An accurate and quantitative method to assess lesion burden and progression is essential to harness the full value of these animal models. Here, we demonstrate the induction of CCM disease in a mouse model and the use of the contrast enhanced X-ray micro computed tomography (micro-CT) method to measure CCM lesion burden in mouse brains. At postnatal day 1 (P1), we used 4-hydroxytamoxifen (4HT) to activate Cre recombinase activity from the Cdh5-CreErt2 transgene to cleave the floxed allele of Ccm2. CCM lesions in mouse brains were analyzed at P8. For micro-CT, iodine based Lugol's solution was used to enhance contrast in brain tissue. We have optimized the scan parameters and utilized a voxel dimension of 9.5 µm, which lead to a minimum feature size of approximately 25 µm. This resolution is sufficient to measure CCM lesion volume and number globally and accurately, and provide high-quality 3-D mapping of CCM lesions in mouse brains. This method enhances the value of the established mouse models to study the molecular basis and potential therapies for CCM and other cerebrovascular diseases.
CCM are thin walled, dilated vascular malformations in the brain with prevalence of up to 0.5% in the human population1. CCM can be inherited as a dominant disorder due to loss-of-function mutations in one of three genes: CCM1 (aka Krit1), CCM2, and CCM3 (also called PDCD10)2,3,4,5,6. These genes are present in a single signaling complex.
Various models have been developed to model human CCM disease and to understand the downstream pathways of CCM genes that are responsible for CCM7,8,9,10. The most robust model is to conditionally delete any one of the Ccm genes with tamoxifen-inducible Cdh5-CreERT2 at P1 in newborn pups8,10. These pups develop CCM lesions in the brain from P6 onward and are expected to be an ideal model for pre-clinical studies in search for mechanisms and therapeutic agents in treating CCM diseases.
CCM lesion burden in mouse brain has been measured primarily by histology-based methods, an approach that is extremely time-consuming and subject to investigator bias10,11,12. MRI based methods have been used to assess CCM lesion burden in the adult mouse model9,13. However, a highly specialized small animal MRI instrument and long scan-time of several hours to overnight is required to achieve a satisfactory resolution to identifying CCM lesions. Also, whether MRI can be used to detect CCM lesions in neonatal mice has not been reported and resolution may limit sensitivity.
We have recently developed a micro-CT technique to image and analyze CCM lesion14,15. This high-resolution, time and cost-effective method dramatically boosted the value of the CCM disease model in mechanistic and therapeutic studies. Contrast-enhancing, whole mount staining methods have been used for micro-CT imaging of soft tissues and mouse embryos16,17. Previously, we have used an osmium-based staining to enhance contrast for micro-CT imaging of CCM lesions in brain14. In this paper, we used a less toxic, non-destructive, and cost-efficient reagent, an iodine based Lugol's solution, to enhance contrast for micro-CT imaging. Iodine can diffuse throughout the brain and has a high affinity for blood18.
The detailed protocol is presented here for the induction of CCM lesions in a neonatal mouse model along with the imaging and analysis of CCM lesions with a contrast-based micro-CT. This micro-CT based method provides quantitative global measurement of CCM lesion volume, accurately identifies the number and 3-D location of CCM lesions in the mouse brain, and greatly reduces the cost and time required to phenotype these animals.
All animal ethics and protocols were approved by The Sydney Local Health District Animal Welfare Committee and Institutional Animal Care and Use Committee (IACUC) of Tianjin Medical University. All experiments were conducted under the guidelines/regulations of Centenary Institute, University of Sydney and Tianjin Medical University
1. Induction of Cerebral Cavernous Malformations in Mouse Models
2. Sample Preparation for Micro-CT Scans
3. Micro-CT Scan of CCM in the Mouse Brain
4. Analysis of Micro-CT Datasets
A single injection of 4HT at P1 was sufficient to induce CCM lesions in the cerebellum. Lugol's iodine contrasted micro-CT sufficiently detected CCM lesions and could quantify its volume and number. Utilizing the optimized micro-CT, we imaged CCM lesions in the hindbrains of Ccm2iECKO mice. Scanned X-ray images were reconstructed to produce 3-D images of the mouse brain, which allowed visualization of entire lesions in the brain parenchyma at different depths and o...
CCM is a common vascular malformation that affects up to 0.5% of individuals1. CCM can occur in sporadic or familial form. Patient prognosis is often unclear as CCM lesions can rupture unexpectedly to cause stroke and other neurological consequences. Currently, the only treatment option is to surgically remove lesions, which are accompanied by high risk.
Human CCM conditions have recently been reproduced in animal models7,
The authors have nothing to disclose.
The authors acknowledge the facilities and the scientific and technical assistance of the Sydney Microscopy & Microanalysis Research Facility (AMMRF) and the Australian Centre for Microscopy & Microanalysis (ACMM) at the University of Sydney. These studies were supported by Australian National Health and Medical Research Council (NHMRC) project grant 161558 and APP1124011 (XZ).
Name | Company | Catalog Number | Comments |
4-hydroxy tamoxifen | Sigma-Aldrich | H6278 | To activate Cdh5-CreErt2 |
Corn oil | Sigma-Aldrich | C8267-500ML | To dilute 4-hydroxy tamoxifen |
Stereomicroscope | Leica | M205FA | To take macroscopic images |
Lugol's Iodine solution | Sigma-Aldrich | L6146 | To stain samples for contrast micro-CT |
Plastic paraffin film | Parafilm | PM992 | To package samples |
Micro-CT | Xradia | MicroXCT-400 | Micro-CT |
3D rendering software | FEI Visualization Science group | Avizo 3D image processing software | To analyse micro-CT scans |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved