A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Presented here is a protocol for sampling of human placental villous tissue followed by isolation of cytotrophoblasts for primary cell culture. Treatment of trophoblasts with TNFα recapitulates inflammation in the obese intrauterine environment and facilitates the discovery of molecular targets regulated by inflammation in placentas with maternal obesity.
Maternal obesity is associated with an increased risk of adverse perinatal outcomes that are likely mediated by compromised placental function that can be attributed to, in part, the dysregulation of autophagy. Aberrant changes in the expression of autophagy regulators in the placentas from obese pregnancies may be regulated by inflammatory processes associated with both obesity and pregnancy. Described here is a protocol for sampling of villous tissue and isolation of villous cytotrophoblasts from the term human placenta for primary cell culture. This is followed by a method for simulating the inflammatory milieu in the obese intrauterine environment by treating primary trophoblasts from lean pregnancies with tumor necrosis factor alpha (TNFα), a proinflammatory cytokine that is elevated in obesity and in pregnancy. Through the implementation of the protocol described here, it is found that exposure to exogenous TNFα regulates the expression of Rubicon, a negative regulator of autophagy, in trophoblasts from lean pregnancies with female fetuses. While a variety of biological factors in the obese intrauterine environment maintain the potential to modulate critical pathways in trophoblasts, this ex vivo system is especially useful for determining if expression patterns observed in vivo in human placentas with maternal obesity are a direct result of TNFα signaling. Ultimately, this approach affords the opportunity to parse out the regulatory and molecular implications of inflammation associated with maternal obesity on autophagy and other critical cellular pathways in trophoblasts that have the potential to impact placental function.
Obesity is an inflammatory state characterized by chronic low-grade inflammation, stemming from excess adipose tissue and nutrient availability. In obesity, proinflammatory cytokines are elevated in metabolic tissues as well as systemically in circulation. A robust body of evidence has shown that TNFα is significantly elevated in the setting of obesity with implications in insulin resistance and metabolic dysfunction1. Activation of TNFα also contributes to disease pathogenesis in conditions such as cancer and autoimmunity, making it an attractive therapeutic target2.
Inflammation in obesity is compounded by pregnancy, also a proinflammatory state3,4. It has been previously shown that placental TNFα content increases with maternal adiposity in pregnancies with female fetuses. Furthermore, TNFα treatment inhibits mitochondrial respiration in female but not male trophoblast cells, suggesting that TNFα is involved in regulating placental metabolism in a sexually dimorphic manner5. Maternal obesity is associated with the increased incidence of a variety of complications during pregnancy, including stillbirth, with male fetuses being the most susceptible3,6,7,8. Due to its key role at the maternal-fetal interface, changes in the functional capacity of the placenta in the obese intrauterine environment in response to inflammatory signaling may play an important role in mediating the outcomes of obese pregnancies.
Cytotrophoblasts and syncytiotrophoblasts in the villous tissue of the placenta are critical for endocrine signaling and nutrient and oxygen exchange between the mother and developing fetus9. Disruptions in the functional capacity of villous cytotrophoblasts (hereafter referred to as trophoblasts) may jeopardize fetal health and development. This protocol describes a method for sampling of villous tissue from the human term placenta by dissecting away the chorionic and basal plates along with an optimized procedure for the isolation of trophoblasts for primary cell culture. This protocol is derived from established methodologies involving enzymatic digestion of villous tissue to release cells from the extracellular matrix followed by differential density centrifugation to isolate trophoblasts10,11,12. This protocol details an approach in which primary trophoblasts from placentas from lean pregnancies are treated with culture media supplemented with TNFα to simulate one component of the inflammatory milieu associated with maternal obesity. Finally, a simple procedure for harvesting total cell lysates from TNFα-treated trophoblasts followed by Western blotting to detect changes in gene expression is described.
While this model does not recapitulate the obesogenic in utero environment in its entirety, it provides a controlled system that allows one to parse out the individual contribution of TNFα-mediated inflammation in the trophoblasts' response to maternal obesity. This model affords both the opportunity to discover or confirm molecular targets directly regulated by TNFα signaling in trophoblasts as well as allows one to test if changes in gene expression patterns observed in vivo in placentas with maternal obesity may be a result of TNFα-mediated inflammation.
The approach described here was implemented to test the effect of TNFα-mediated inflammation on the regulation of autophagy in human trophoblasts. Trophoblasts from obese pregnancies with male fetuses exhibit disrupted autophagic turnover, or autophagosome maturation13. A protein called Rubicon (RUN domain protein Beclin1-interacting and cysteine-rich containing), which is localized to the lysosomes and late endosomes, has been recently described as a "brake" in the autophagic turnover process because it functions as a negative regulator of autophagosome maturation14,15. In fact, Rubicon is a rare example of a protein that restrains autophagy, which makes it a valuable therapeutic target. Very little information is available about the pathophysiological significance of Rubicon, except for its roles in the innate immune response to microbials16,17 and cardiomyocyte protection18. Using the protocol described here, it is found that Rubicon is upregulated in female primary trophoblasts in response to treatment with increasing concentrations of TNFα up to 250 pg/mL. The regulation of Rubicon may play a role in how female fetuses fare better than males in pregnancies with maternal obesity. Recapitulating inflammation associated with maternal obesity ex vivo by exposing human trophoblasts to exogenous TNFα provides a platform to study the impact of the obese intrauterine environment on the regulation of critical pathways in trophoblasts and by extension, placental function.
Access restricted. Please log in or start a trial to view this content.
Placentae were collected from the Labor and Delivery Unit at University Hospital under a protocol approved by the Institutional Review Board of Oregon Health and Science University in Portland, Oregon, with informed consent from the patients.
1. Collection of Placental Tissue
2. Isolation of Trophoblasts from Villous Tissue
3. Treatment of Primary Trophoblasts with TNFα, Collection of Cell Lysates, and Western Blotting
Access restricted. Please log in or start a trial to view this content.
Term human placentas from lean (pre-pregnancy body mass index (BMI) <25) mothers with uncomplicated pregnancies carrying female offspring were collected and sampled within 15 minutes of delivery by cesarean section (no labor). The placentas were examined for the absence of calcifications and typical development: weighing between 300-600 g with the umbilical cord and membranes removed, round in shape, between 15 - 25 cm in diameter, and umbilical cord inserted into the middle of the pl...
Access restricted. Please log in or start a trial to view this content.
The placenta, responsible for regulating the growth of the fetus, exhibits compromised function in the obese environment6. Despite the high metabolic demands of trophoblasts, placentas with maternal obesity exhibit dysfunctional mitochondrial respiration6,19. Changes in placental metabolism may contribute to the increased incidence of complications and adverse fetal outcomes observed in obese pregnancies3,
Access restricted. Please log in or start a trial to view this content.
The authors have nothing to disclose.
The authors thank women who donated their placentas for this study. We also thank the Labor and Delivery Department at OHSU and the Maternal and Fetal Research Team for coordinating the collection of placentas. We are grateful to Eric Wang, Ph.D., and Kelly Kuo, MD for support and help with experimental methods and optimization.
This work was funded by NIH HD076259A (AM) and AHA GRNT29960007 (AM).
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
10X HBSS | Gibco | 14185-052 | |
CaCl2 (anhyd.) | Sigma-Aldrich | C1016-100G | |
MgSO4 (anhyd.) | Sigma-Aldrich | M7506-500G | |
Hepes | Fisher Scientific | BP310-500 | |
Trypsin | Gibco | 15090-046 | |
DNAse | Worthington Biochemical Corp. | LS002139 | |
Protease/Phosphatase inhibitors | Thermofisher Scientific | 88668 | |
Tris HCl | Invitrogen | 15506-017 | |
EDTA | Invitrogen | 15576-028 | |
NaCl | Sigma-Aldrich | S7653-1KG | |
SDS | Fisher Scientific | BP166-600 | |
Sodium deoxycholate. | Fisher Scientific | AAJ6228822 | |
Triton X-100 | Sigma-Aldrich | X100-500ML | |
Iscove’s Modified Dulbecco’s Medium (IMDM) | Gibco | 12440-046 | |
Fetal Bovine Serum (FBS) | Corning | 35-010-CV | |
Neonatal Calf Serum (NCS) | Gibco | 26010-074 | |
Penicillin/Streptomycin (Pen/Strep) | Gibco | 15140-122 | |
10% Formalin | Fisher Scientific | 23-427-098 | |
DMSO | Sigma-Aldrich | D2650-100ML | |
TNFα | Sigma-Aldrich | SRP3177-50UG | |
Phosphate Buffered Saline (PBS) | Gibco | 70013-032 | |
K2EDTA vacutainer blood collection tubes | BD | 366450 | |
Percoll (Density Gradient Media, DGM) | GE Healthcare | 17-0891-01 | |
6 well plates | Corning | 353046 | |
Cell strainers | Fisher Scientific | 22363549 | |
Eppendorf Safe-Lock Tubes 2.0 mL, natural | Fisher Scientific | 22363352 | |
Trypan Blue | Corning | 25-900-Cl | |
Bio-Rad Mini-PROTEAN Tetra System | Bio-Rad | 1658001FC | |
Bio-Rad Mini Trans-Blot Cell | Bio-Rad | 1658033 | |
TGX FastCast Acrylamide Kit, 12% | Bio-Rad | 1610175 | |
Mini-Protean 3 Multi-Casting Chamber | Bio-Rad | 1654112 | |
4X Laemmli Sample Buffer | Bio-Rad | 1610747 | |
2-Mercaptoethanol | Sigma-Aldrich | M3148-100ML | |
Glycine | Bio-Rad | 1610718 | |
Tween-20 | Sigma-Aldrich | P7949-500ML | |
Instant Nonfat Dry Milk | Carnation | ||
Rubicon (D9F7) Rabbit mAb | Cell Signalling Technology | 8465S | |
Monoclonal Anti-β-Actin antibody produced in mouse | Sigma-Aldrich | A2228-100UL | |
Anti-rabbit IgG, HRP-linked Antibody | Cell Signalling Technology | 7074S | |
Anti-mouse IgG, HRP-linked Antibody | Cell Signalling Technology | 7076S | |
SuperSignal West Pico PLUS Chemiluminescent Substrate | Thermo Scientific | 34578 |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved