A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Mild intrauterine hypoperfusion was produced by artery stenosis with metal microcoils wrapped around the uterine and ovarian arteries in rats at embryonic day 17. This procedure produced prenatal hypoperfusion and intrauterine growth restriction.
Intrauterine hypoperfusion/ischemia is one of the major causes of intrauterine/fetal growth restriction, preterm birth, and low birth weight. Most studies of this phenomenon have been performed in either models with severe intrauterine ischemia or models with gradient degree of intrauterine hypoperfusion. No study has been performed in a model on uniform mild intrauterine hypoperfusion (MIUH). Two models have been used for studies of MIUH: a model based on suture ligation of either side of the arterial arcade formed with the uterine and ovarian arteries, and a transient model based on clipping the bilateral ovarian arteries and aorta having patency. Those two rodent models of MIUH have some limitations, e.g., not all fetuses are subjected to MIUH, depending on their position in the uterine horn. In our MIUH model, all fetuses are subjected to a comparable level of intrauterine hypoperfusion. MIUH was achieved by mild stenosis of all four arteries feeding the uterus, i.e., the bilateral uterine and ovarian arteries.
Arterial stenosis was induced by metal microcoils wrapped around the feeding arteries. Producing arterial stenosis with microcoils allowed us to control, optimize, and reproduce decreased blood flow with very little inter-animal variability and a low mortality rate, thus enabling accurate evaluation. When microcoils with an inner diameter of 0.24 mm were used, the blood flow in both the placenta and fetus was mildly decreased (approximately 30% from the pre-stenosis level in the placenta). The offspring of our MIUH model clearly demonstrates long-lasting alterations in neurological, neuroanatomical and behavioral test results.
Infants with intrauterine growth restriction (IUGR) (also known as fetal growth restriction) (birth weight <10th percentile for gestational age), preterm birth (born at < 37 weeks of gestation), and/or low birth weight (< 2500 g) account for nearly 10% of all newborns 2,3. Many of these infants present with neurological problems such as cerebral palsy and developmental disorders (e.g., attention-deficit/hyperactivity disorder (ADHD) and learning disorders) 3,4,5. Those conditions have similarities and differences in their etiology and outcomes. The etiology of IUGR is multifactorial, and placental insufficiency associated with intrauterine hypoperfusion is considered to be the most common cause in non-anomalous fetuses 7. The etiology of preterm is multifactorial as well, and chorioamnionitis is the most frequent cause 8.
The influence of mild intrauterine hypoperfusion (MIUH) on the developing brain is unclear. Currently available animal models of intrauterine hypoperfusion/ischemia primarily involve either severe hypoperfusion or gradient degree of hypoperfusion with or without reperfusion 9,10,11. In clinical settings, however, cases of MIUH are considered to be far more frequent than those involving such severe conditions. The currently available models of MIUH are a rodent model involving suture ligation of either the uterine or the ovarian artery and a rodent model involving clipping the bilateral ovarian arteries and aorta having patency 12,13,14,15,16,17. One of the disadvantages of these models is the extensive inter-fetus variability, ranging from fetuses with profound hypoperfusion to fetuses with nearly intact perfusion, depending on the position of the fetus within the arterial arcade of the uterine and ovarian arteries. Another disadvantage of these models is their inability to distinguish the position of each fetus after birth; hence, researchers cannot distinguish the severity of intrauterine hypoperfusion experienced by an individual pup after its birth.
We have developed a rat model of MIUH involving multiple artery stenosis 1. Wrapping metal micro-coils with an inner diameter of 0.24 mm around the ovarian and uterine arteries causes stenosis, but not obstruction, of the blood vessels (Figure 1). Applying these microcoils at the proximal parts of all of the arteries supplying the uterus, i.e., the bilateral uterine and ovarian arteries, on embryonic day 17 (equivalent to embryonic weeks 20-25 in humans 18) induces a significant but mild decrease in blood flow to the placentas and fetuses. The decreases in blood flow after coils are applied to all four arteries feeding the uterus are largely the same across each placenta and fetus. The fetus mortality rate is less than 20%. The pups are born via spontaneous labor 1-2 days earlier (embryonic day 21-22) than normal. Almost all pups are born exhibiting significantly low birth weights 1. Gray and white matter volumes are decreased without obvious tissue damage 1. Pups present with delayed acquisition of newborn reflexes, muscle weakness, and altered spontaneous activity 1. This model mimics the clinical signs and symptoms of children born prematurely or with IUGR; children born preterm exhibit reduced gray and white matter volume with or without white matter injury 6, present delayed milestones of neurological development, and may present behavioral problems such as ADHD 3,5; children with IUGR exhibit minimal neuroanatomical alterations, and have an increased risk of impaired neurological development such as motor and cognitive delay 4,7. Preterm birth and IUGR are different conditions, but the two conditions share the basic mechanism, i.e. insults to immature brains before full-term gestational age.
All experiments were performed in accordance with protocols approved by the Experimental Animal Care and Use Committee of the National Cerebral and Cardiovascular Center, Suita, Japan.
1. Prepare the following animals and materials for MIUH surgery
2. Prepare for MIUH surgery
3. Perform MIUH surgery
After applying microcoils to all of the arteries feeding the uterus, i.e., the bilateral uterine and ovarian arteries, all fetuses are subjected to comparable levels of hypoperfusion. The application of microcoils with an inner diameter of 0.24 mm causes mild stenosis of those arteries, thereby causing a mild decrease in blood flow to the placentas and fetuses (Figure 3; approximately 30% from the pre-stenosis level in the placenta, see reference 1 for detail...
The microcoil stenosis of both ovarian and uterine arteries in both uterine horns produces consistent and reproducible intrauterine hypoperfusion in all placentas and fetuses. The level of hypoperfusion can be modified by using microcoils with different inner diameters. Rat pups born from a dam on which artery stenosis has been performed with microcoils 0.24 mm in inner diameter demonstrate IUGR and premature birth (see reference 1 for details). The pups exhibit neuroanatomical and behavioral alterations that resemble th...
The authors have nothing to disclose.
This work was supported by the FY 2013 Research Exchange Program between JSPS and CNRS, JSPS KAKENHI Grant Number 26860858, and the Narishige Neuroscience Research Foundation. We thank Drs. Mariko Harada-Shiba and Kyoko Shioya for helpful discussions. We thank Mari Furuta, Mutsumi Sakamoto, Ritsuko Maki, and Dr. Emi Tanaka for excellent technical assistance.
Name | Company | Catalog Number | Comments |
Stereomicroscope | |||
Isoflurane anesthesia machine | |||
Anesthesia induction box | |||
Heating pad | |||
Diaper 30x40 cm | |||
Depilatory foam or shaver | |||
Iodine disinfectant solution | |||
Gauze 10x20 cm | |||
Surgical drape 45x45 cm with a round opening 5 cm in diameter | |||
Spray bottle with ethanol for disinfection | |||
Cotton swab | |||
Forceps with large blunt tips | |||
Forceps with angled fine tips | |||
Scissors | |||
Surgical scalpel, blade size is 27mm long (no.10, Axel, AS ONE Corporation, Osaka, Japan) | |||
Surgical suture needle | |||
Metal microcoils; inner diameter 0.24 mm, made from gold-coated steel (SAMINI Co. Ltd., Shizuoka, Japan) | |||
Silk suture 4-0 | |||
Sterile saline (0.9% sodium chloride) | |||
Heating water bath | |||
Plastic syringes (50ml) and needles (18G) |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved