A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
* These authors contributed equally
Homeobox genes are regulatory genes often associated with tumors in the adult organisms. We investigated their comparative expression by immunohistochemical and real-time PCR analysis, in normal and inflammatory nasal mucosae and in sinonasal neoplasms in order to use them as possible diagnostic and therapeutic targets.
OTX homeobox (HB) genes are expressed during embryonic morphogenesis and during the development of olfactory epithelium in adult organisms. Mutations occurring in these genes are often related to tumorigenesis in human. No data are available today regarding the possible correlation between OTX genes and tumors of the nasal cavity. The aim of this work is to understand if OTX1 and OTX2 can be considered as molecular markers in the development of nasal tumors. We selected nasal and sinonasal adenocarcinomas to investigate the expression of OTX1 and OTX2 genes through immunohistochemical and real-time PCR analyses.Both OTX1 and OTX2 were absent in all the samples of sinonasal Intestinal-Type Adenocarcinomas (ITACs). OTX1 mRNA was identified only in Non-Intestinal Type Adenocarcinomas (NITACs) while OTX2 mRNA was expressed only in Olfactory Neuroblastomas (ONs). We have demonstrated that the differential gene expression for both OTX1 and OTX2 genes might be a useful molecular marker to distinguish the different types of sinonasal tumors.
OTX HB genes are the vertebrate homologue of the Drosophila orthodenticle genes (otd) and they encode for transcription factors which are normally expressed during embryonic morphogenesis, but they can also be expressed in the adult organism with different functions. During embryonic development they control the specification of cell identity, cell differentiation, and the positioning of the body axis¹. The OTX family includes OTX1 and OTX2 genes which display different functions. OTX1 is involved in brain and sensory organ development. In the adult organism, it is expressed in sensory organs and is transcribed at low levels in the anterior lobe of the pituitary gland2; it also plays a role in hematopoiesis, being expressed in hematopoietic pluripotent and progenitor cells3. OTX2 is involved in the development of the rostral head and its translated protein acts as a morphogen because it generates a gradient through which other genes are activated or repressed in a spatio-temporal manner, thus contributing to cell proliferation and differentiation. In the adult organism, OTX2 is found exclusively in the choroid plexus and pineal gland4.
Mutations in OTX genes are often related to the appearance of human congenital, somatic, or metabolic defects. Gain or loss mutations in OTX genes could promote tumorigenesis if they are not able to properly control cellular growth and/or differentiation5. In leukemias and lymphomas as well as in many solid tumors (e.g., medulloblastomas6, aggressive non-Hodgkin lymphomas2, breast carcinomas7, colorectal cancers8, and retinoblastoma9), the deregulated expression of OTX HB genes is well documented10. In addition, OTX2 mutations have been demonstrated in cases of anophthalmia and microphtalmia11 due to the crucial role for this gene in the control of eye development.
In the context of solid neoplasms, the discovery of molecular and phenotypic markers is an important challenge for the diagnosis, classification, and treatment of several types of tumor11, including those that originate in the nasal cavity and paranasal sinuses. In fact, despite that these areas occupy only a modest anatomical space, mucosal epithelium, glands, soft tissues, bone, cartilage or neural/neuroectodermal, and hematolymphoid cells can be often the site for the origin of complex and histologically different groups of tumors. Different types of neoplasms involving the sinonasal tract present a variety of features that overcome what is usually seen in the upper aerodigestive tract or even throughout most parts of the body12.Sinonasal malignancies are rare and present an annual incidence of 1:100,000 inhabitants worldwide, and so this prevents studies regarding the pathways involved in the tumorigenesis and the testing of alternative treatment strategies.Despite this, the advances in imaging techniques, surgical approaches, and radiotherapy have improved the clinical management of sinonasal cancer.Moreover, the development of cell lines as well as animal models and cancer genetic profiling currently constitute the basis for the future targeted anticancer therapies13. To date, there are no reports regarding OTX1 and/or OTX2 expression in neoplasms of the nasal cavity, paranasal sinuses, and nasopharynx. Since we have previously observed that OTX1 and OTX2 are involved in breast cancer7, we wondered if these genes could be present not only in the normal nasal mucosa but also in tumors of the nasal cavity. To reach this goal we obtained from the Department of Pathology of the "Ospedale di Circolo" in Varese samples of normal mucosa, and nasal and sinonasal adenocarcinomas collected from 1985 to 2012 and classified according to the World Health Organization (WHO) classification of Head and Neck Tumors. We choose to analyze them through real-time PCR and immunohistochemistry analyses and we evaluated OTX1 and OTX2 expression to determine if they can be considered molecular markers for these types of tumors.
Access restricted. Please log in or start a trial to view this content.
All the studies were performed according the Declaration of Helsinki (1975) with written informed consent and approved by the Ethical Committee of the University of Insubria in Varese.
1. Collection of the Samples
2. Immunochemistry
3. RNA Extraction and Reverse-transcription
4. Real-time PCR and Data Analysis
Access restricted. Please log in or start a trial to view this content.
In the normal mucosa we observed strong and homogenous nuclear reactivity for OTX genes both in the ciliated pseudostratified respiratory-type epithelium and in the submucosal glandular cells (Figure 1A). We found nuclear expression for OTX1 in all NITACs samples (Figure 1B), while little or absent immunoreactivity was highlighted in ITACs (Figure 1C). Intense immunoreactivity was present in all ONs ...
Access restricted. Please log in or start a trial to view this content.
This study shows for the first time that, based on mRNA levels, the HB genes OTX1 and OTX2 are expressed in normal sinonasal mucosa and submucosal glands, inflammatory polyps, sinonasal Schneiderian papillomas, and in the different epithelial and neuroectodermal neoplasms, including squamous carcinomas, non-intestinal type sinonasal adenocarcinomas, salivary gland-type tumors, neuroendocrine neoplasms, and ONs.
Modifications and Troubleshooting:
To avoid RNA degradatio...
Access restricted. Please log in or start a trial to view this content.
The authors have nothing to disclose.
This work was supported by Centro Grandi Strumenti Università dell'Insubria, Fondazione Comunitaria del Varesotto, Fondazione del Monte di Lombardia, and Fondazione Anna Villa e Felice Rusconi.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
RecoverAll Total Nucleic Acid Isolation | Applied Biosystem | AM1975 | |
High-Capacity cDNA Reverse Transcription Kit | Applied Biosystem | 4368814 | |
TaqMan Universal PCR Master Mix, no AmpErase UNG | Applied Biosystem | 4326614 | |
ABI Prism 7000 | Applied Biosystem | 270001857 | |
ACTB probe | Applied Biosystem | Out of production. Sequence protected by copyright | |
OTX1 probe | Applied Biosystem | Out of production. Sequence protected by copyright | |
OTX2 probe | Applied Biosystem | Out of production. Sequence protected by copyright | |
Acqueous Hydrogen Peroxide | Merk | 1072090250 | |
Citrate Buffer | Sigma-Aldrich | 20276292 | |
Triton | Sigma-Aldrich | 101473728 | |
Tris | Merk | 108382 | |
NaCl | Merk | 106404 | |
Goat Anti-OTX2 Antibody | Vector Laboratories | Out of production. Catalog number not available | |
Rabbit Anti-Goat Antibody | Vector Laboratories | BA5000 | |
ABC-Peroxidase Complex | Vector Laboratories | PK6100 | |
3,3'-diaminobenzidine tetrahydrocloride (DAB) | Sigma-Aldrich | D5905 | |
Harris Hematoxylin | Bioptica | 0506004/L | |
Pertek | Kaltek SRL | 1560 | |
BioClear | Bioptica | W01030799 |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved