A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Here, we describe a protocol for chromatin immunoprecipitation of modified histones from the budding yeast Saccharomyces cerevisiae. Immunoprecipitated DNA is subsequently used for quantitative PCR to interrogate the abundance and localization of histone post-translational modifications throughout the genome.
Histone post-translational modifications (PTMs), such as acetylation, methylation and phosphorylation, are dynamically regulated by a series of enzymes that add or remove these marks in response to signals received by the cell. These PTMS are key contributors to the regulation of processes such as gene expression control and DNA repair. Chromatin immunoprecipitation (chIP) has been an instrumental approach for dissecting the abundance and localization of many histone PTMs throughout the genome in response to diverse perturbations to the cell. Here, a versatile method for performing chIP of post-translationally modified histones from the budding yeast Saccharomyces cerevisiae (S. cerevisiae) is described. This method relies on crosslinking of proteins and DNA using formaldehyde treatment of yeast cultures, generation of yeast lysates by bead beating, solubilization of chromatin fragments by micrococcal nuclease, and immunoprecipitation of histone-DNA complexes. DNA associated with the histone mark of interest is purified and subjected to quantitative PCR analysis to evaluate its enrichment at multiple loci throughout the genome. Representative experiments probing the localization of the histone marks H3K4me2 and H4K16ac in wildtype and mutant yeast are discussed to demonstrate data analysis and interpretation. This method is suitable for a variety of histone PTMs and can be performed with different mutant strains or in the presence of diverse environmental stresses, making it an excellent tool for investigating changes in chromatin dynamics under different conditions.
The dynamic post-translational modification (PTM) of histones is a key regulatory mechanism for many DNA-templated processes, including transcription, replication and DNA repair1,2. The ability to determine the abundance and precise localization of modified histones concomitant with these processes is therefore critical to understanding their regulation under different conditions in the cell. The development of chromatin immunoprecipitation (chIP) as a method largely stemmed from biochemical studies of the interactions of proteins with DNA, particularly in vitro methods using chemical crosslinkers, coupled with the need to evaluate the dynamic nature of protein-DNA interactions in vivo and at specific regions of the genome3,4,5. The advancement of quantitative PCR (qPCR) and sequencing technologies has also expanded the ability to perform chIP experiments with quantitative comparisons and across whole genomes, making it a powerful tool for dissecting DNA-protein interactions at multiple levels.
Currently, chIP is a required method for any research group interested in chromatin-mediated regulation of the genome as there are no comparable methods for directly interrogating the physical link between a modified histone and a specific genomic locus in vivo. Although variations of this method using next generation sequencing to map histone modifications throughout the genome6,7 are available, these approaches may address different scientific questions and their scale, cost and technical resources may be limiting for some research groups. Additionally, targeted chIP-qPCR is necessary to complement these approaches by providing methods to both optimize the chIP protocol prior to sequencing and to validate results from the epigenomic datasets. Mass spectrometry based approaches for identifying the full complement of histone marks associated with genomic regions have also emerged8,9,10,11, however, these approaches have some limitations regarding which regions of the genome can be probed and they require technical expertise and instrumentation that will not be available to all research groups. Therefore, chIP remains a foundational method for analyzing the abundance and distribution of histone modifications under diverse conditions for all research groups interested in epigenetics, chromatin and the regulation of genomic functions.
Here, we describe a method for chIP using the budding yeast model Saccharomyces cerevisiae (S. cerevisiae) to investigate the distribution of histone PTMs at chromatin. This approach relies on a number of core components of chIP protocols developed in yeast and also applied to diverse model systems12,13. Interactions between modified histones and DNA in the cell are preserved by crosslinking with formaldehyde. Following lysate preparation, chromatin fragments are solubilized into uniformly-sized fragments by digestion with micrococcal nuclease. Immunoprecipitation of the modified histones is performed with either commercial or lab-generated antibodies and any associated DNA is isolated and analyzed for enrichment at particular genomic regions using qPCR (Figure 1). For many histone modifications, the quantity of DNA obtained from this protocol is sufficient for testing more than 25 different genomic loci by qPCR.
This chIP method is highly versatile for monitoring the distribution of a single histone modification across multiple mutant strains or environmental conditions, or for testing multiple histone modifications in wildtype cells at a number of genomic loci. Furthermore, numerous components of the protocol are easily adjustable to optimize detection of either highly- or lowly-abundant histone marks. Finally, performing chIP of modified histones in budding yeast provides the opportunity to use key controls for antibody specificity that are largely unavailable in other systems. Namely, yeast strains can be generated that carry point mutations in histone residues that are targeted for modification, and, in some cases, there is only a single enzyme that catalyzes modification on a particular histone residue (e.g. histone lysine methyltransferases). Therefore, chIP can be performed in either the histone mutant or enzyme deletion strains to assay the extent to which non-specific binding of the antibody may be occurring and generating false positive results. This control is particularly valuable for newly-developed antibodies, and may even be used to validate antibody specificity for conserved histone modifications prior to their use in other systems. This approach complements other methods to test antibody specificity that distinguish among different modification states (such as mono-, di- and tri-methylation), including probing arrays of modified peptides and performing western blots of histones or nucleosomes with defined modifications. Overall, chIP in budding yeast is a powerful method for assessing the dynamics of histone PTMs throughout the genome and dissecting the mechanisms governing their regulation.
1. Pre-bind Antibody to Magnetic Beads
2. Grow Yeast Cells
3. In Vivo Crosslinking of Proteins to DNA
4. Make Yeast Lysates
5. Immunoprecipitate (IP) Modified Histones
6. Wash IPs and Elute Histone-DNA Complexes
7. Reverse Protein-DNA Crosslinks
8. Purify and Concentrate DNA
9. Quantitative PCR (qPCR) to Detect Enriched Genomic Regions
10. Determine MNase Digest Conditions (Recommended Prior to First Full chIP Experiment)
One key component of this protocol is optimizing the concentration of micrococcal nuclease (MNase) used to digest the chromatin into soluble fragments, as outlined in Step 10. This is critical for obtaining high resolution data regarding the distribution of histone modifications at genomic regions of interest. An MNase titration should be performed to determine the most suitable concentration to achieve primarily mono-nucleosomes with a smaller amount of di-nucleosomes in the soluble chro...
The procedure described here allows for the efficient recovery of DNA associated with modified histones in yeast cells by immunoprecipitation. This is followed by qPCR using primers which amplify regions of interest to determine local enrichment or depletion of specific histone modifications. Despite being developed as a method almost 20 years ago, chIP remains the defining assay for investigating histone modification status at different genomic regions and under diverse conditions. Although chIP coupled to next generati...
The authors have nothing to disclose.
The authors would like to thank members of the Green lab for helpful discussions. This work was supported in part by NIH grants R03AG052018 and R01GM124342 to E.M.G.
Name | Company | Catalog Number | Comments |
Yeast Extract | Research Products International (RPI) | Y20025-1000.0 | |
Peptone | Research Products International (RPI) | P20250-1000.0 | |
Dextrose | ThermoScientific | BP350-1 | |
Formaldehyde | Sigma-Aldrich | F8775 | |
Glycine | Fisher Scientific | AC12007-0050 | |
Tris | Amresco | 0497-5KG | |
EDTA | Sigma-Aldrich | E6758-500G | |
NaCl | ThermoScientific | BP358-10 | |
4-Nonylphenyl-polyethylene glycol | Sigma-Aldrich | 74385 | Equivalent to NP-40 |
MgCl | ThermoScientific | S25533 | |
CaCl2 | Sigma-Aldrich | 20899-25G-F | |
LiCl | ThermoScientific | AC413271000 | |
Sodium Dodecyl Sulfate | Amresco | M107-1KG | |
Sodium Deoxycholate | Sigma-Aldrich | 30970-100G | |
Sodium Acetate | Sigma-Aldrich | S2889 | |
NaHCO3 | ThermoScientific | S25533 | |
PMSF | Sigma-Aldrich | P7626-5G | |
Yeast protease inhibitor cocktail | VWR | 10190-076 | |
25 Phenol:24 Chloroform:1 Isoamyl Alcohol | VWR Life Science | 97064-824 | |
Ethanol | Sigma-Aldrich | E7023 | |
Nuclease-Free Water | VWR | 100720-992 | |
Micrococcal Nuclease | Worthington Biochemical | LS004797 | |
Glycogen | ThermoScientific | R0561 | |
Proteinase K | Research Products International (RPI) | P50220-0.1 | |
RNase A | Sigma-Aldrich | R6513-50MG | |
Bradford Assay Reagent | ThermoScientific | 23238 | |
BSA Standard 2 mg/mL | ThermoScientific | 23210 | |
α H4 | EMD Millipore | 04-858 | |
α H4K16ac | EMD Millipore | ABE532 | |
α H3 | Abcam | ab1791 | |
α H3K4me2 | Active Motif | 39142 | |
High Rox qPCR Mix | Accuris qMax Green, Low Rox qPCR Mix | ACC-PR2000-L-1000 | |
Protein A/G Magnetic Beads | ThermoScientific | 88803 | |
magnetic stand for 1.5mL tubes | Fisher Scientific | PI-21359 | |
Acid-Washed Glass Beads | Sigma-Aldrich | G8772 | |
Microtube Homogenizer | Benchmark | D1030 | |
2.0 mL screw-cap tubes with sealing rings | Sigma-Aldrich | Z763837-1000EA | |
Gel loading tips | Fisher Scientific | 07-200-288 | |
Cuvettes | Fisher Scientific | 50-476-476 | |
Parafilm | Fisher Scientific | 13-374-10 | |
50 mL conical tubes | Fisher Scientific | 14-432-22 | |
384-Well PCR Plate | Fisher Scientific | AB-1384W | |
Gyratory Floor Shaker | New Brunswick Scientific | Model G10 | |
Spectrophotometer | ThermoScientific | ND-2000c | |
Real-Time PCR Detection System | Bio-Rad | 1855485 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved