A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Here we present echocardiography protocols for two-dimensional and three-dimensional image acquisition of the beating heart of the axolotl salamander (Ambystoma mexicanum), a model species in heart regeneration. These methods allow for longitudinal evaluation of cardiac function at a high spatiotemporal resolution.
Cardiac malfunction as a result of ischemic heart disease is a major challenge, and regenerative therapies to the heart are in high demand. A few model species such as zebrafish and salamanders that are capable of intrinsic heart regeneration hold promise for future regenerative therapies for human patients. To evaluate the outcome of cardioregenerative experiments it is imperative that heart function can be monitored. The axolotl salamander (A. mexicanum) represents a well-established model species in regenerative biology attaining sizes that allows for evaluation of cardiac function. The purpose of this protocol is to establish methods to reproducibly measure cardiac function in the axolotl using echocardiography. The application of different anesthetics (benzocaine, MS-222, and propofol) is demonstrated, and the acquisition of two-dimensional (2D) echocardiographic data in both anesthetized and unanesthetized axolotls is described. 2D echocardiography of the three-dimensional (3D) heart can suffer from imprecision and subjectivity of measurements, and to alleviate this phenomenon a solid method, namely intra/inter-operator/observer analysis, to measure and minimize this bias is demonstrated. Finally, a method to acquire 3D echocardiographic data of the beating axolotl heart at a very high spatiotemporal resolution and with pronounced blood-to-tissue contrast is described. Overall, this protocol should provide the necessary methods to evaluate cardiac function and model anatomy, and flow dynamics in the axolotl using ultrasound imaging with applications in both regenerative biology and general physiological experiments.
Ischemic heart disease is a leading cause of death worldwide1,2. Although many survive a myocardial infarction due to rapid and fine-tuned medical intervention, ischemic incidents in humans often lead to fibrotic scarring associated with hypertrophy, electrical malfunction, and a diminished functional capacity of the heart. This lack of regenerative potential of cardiac tissue is shared among mammals and although controversial claims of mammalian cardiac regeneration have been reported, these have been limited to specific murine strains3,4 and hypoxia treated mice5. Thus, the field of cardiac regenerative medicine and biology is generally limited to non-mammalian animal models to study intrinsic heart regenerative phenomena. The zebrafish (Danio rerio) has in the past decade been established as the most well characterized model for intrinsic heart regeneration6,7,8,9,10. Due to easy laboratory maintenance, a short generation time and a wide array of molecular tools available, the zebrafish is well adapted as a model for genetic and molecular mechanisms underlying cardiac development and regeneration. However, the minute dimensions of the zebrafish heart make it less suited for functional evaluation, and complicated surgical procedures and the non-tetrapod phylogeny of the zebrafish limits the sensible extrapolation of findings in this species, thus justifying the use of other larger tetrapod models. One of the earliest models of vertebrate heart regeneration was a caudate amphibian, the Eastern newt (Notophthalmus viridescens)11, a species that remains a valuable model12.
In recent years another caudate amphibian, the Mexican axolotl (A. mexicanum) has entered the scene as a large (up to 100 g of body mass) and highly laboratory adaptable animal model for a wide array of regenerative disciplines spanning limb regeneration, spinal cord injury, and cardiac regeneration13,14,15,16,17. The axolotl is highly amenable to functional measurements on the heart using high frequency echocardiography and the absence of calcified structures on the ventral side of the heart allows for ultrasound imaging with a much lower level of image artifacts (acoustic shadowing and reverberation in particular) than observed in other model animals with calcified sternum and ribs.
The following protocol describes several different methods and preparations (Figure 1, Figure 2) to acquire reproducible echocardiographic measurements on the axolotl heart in both anesthetized (applying three different anesthetics: benzocaine, MS-222, and propofol) and unanesthetized animals in two (Figure 3, Figure 4, Figure 5, Figure 6, Figure 7, Supplementary Files 1-12) and three (Figure 8, Figure 9, Supplementary Files 13-14) spatial dimensions. The amphibian heart is three-chambered (two atria and a single ventricle). The atria are supplied by a large sinus venosus and the ventricle empties into the conus arteriosus outflow tract (Figure 2). Since most emphasis is traditionally placed on ventricular regeneration and less on the recovery of atria6,7,8,9,10,11,12,14,17, this protocol mainly focuses on measurements of ventricular function.
Amphibian echocardiography is not well-described in the literature, and the development of the 2D methods described in this paper have been driven by the need to best represent the functionality of the beating axolotl heart at a given time and experimental setting. Thus, the methods described here are applicable in heart regenerative experiments where cardiac function can be repeatedly monitored over the course of a regeneration process. Additionally, the methods can be applied in cardiophysiological experiments on the axolotl in general or modified slightly to span other caudate or anuran amphibian models (e.g.,Xenopus). The axolotl exists in several different strains and color variations (e.g., wildtype, melanoid, white, albino, transgenic white with green fluorescence protein expression), however these characteristics do not affect the compatibility of the axolotl with the described protocol. The method described here to acquire 3D echocardiographic data is a modified version of the spatiotemporal image correlation (STIC) technique developed for clinical ultrasound and the quadratic averaging method described previously in the developing chicken to enhance the signal of blood speckles in soft tissues in species containing nucleated red blood cells18,19. This method allows for advanced modeling of cardiac contraction and computed fluid dynamics in the axolotl heart.
Access restricted. Please log in or start a trial to view this content.
The procedures carried out in this protocol were in accordance with the national Danish legislation for care and use of laboratory animals and the experiments were approved by the Danish National Animal Experiments Inspectorate (protocol# 2015-15-0201-00615).
1. Preparations
2. Anesthetize Axolotls
3. 2D Echocardiography on Anesthetized Axolotl
4. 2D Echocardiography on Unanesthetized Axolotl
5. Evaluate 2D Echocardiography Data and Minimize Subjectivity
6. 3D Echocardiography on Anesthetized Axolotl
Access restricted. Please log in or start a trial to view this content.
Intrapericardial space in the axolotl is dependent on the size of the animal. Smaller animals (2-20 g, 7-15 cm) will have an excess of pericardial fluid (appearing dark in echocardiography) surrounding the cardiac chambers whereas in larger sexually mature animals (> 20 g, > 15 cm) the chambers will occupy most of the intrapericardial space. To provide the best overview for representative results of echocardiographic views of the axolotl heart, a smaller animal (10 g, 10 cm) was app...
Access restricted. Please log in or start a trial to view this content.
Echocardiography in the axolotl and other non-mammalian species yields fundamentally different data than mammalian echocardiography because of the nucleated nature of red blood cells in all vertebrates except adult mammals. This results in a pronounced blood signal and less blood-to-tissue contrast in axolotl echocardiographic images compared to e.g., mouse or human echocardiography. This can make image segmentation on unprocessed single frame ultrasound images more difficult as it can be hard to distinguish blo...
Access restricted. Please log in or start a trial to view this content.
The authors have nothing to disclose.
We would like to acknowledge Kasper Hansen, Institute for Bioscience, Aarhus University for providing access to and assistance with the electronic micromanipulator for 3D echocardiographic acquisition.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Axolotl (Ambystoma mexicanum) | Exoterra GmbH | N/A | All strains (wildtype, melanoid, white, albino, transgenic white with GFP) can be applied for echocardiography |
Vevo 2100 | Fujifilm, Visualsonics | Vevo 2100 | High frequency ultrasound system |
MS700 | Fujifilm, Visualsonics | MS700 | 50 MHz center frequency, transducer |
MS550s | Fujifilm, Visualsonics | MS550s | 40 MHz center frequency, transducer |
Micromanipulator | Zeiss | NA | |
Benzocain | Sigma-Aldrich | 94-09-7 | ethyl 4-aminobenzoate |
MS-222 | Sigma-Aldrich | 886-86-2 | ethyl 3-aminobenzoate methanesulfonic acid |
Propofol | B. Braun Medical A/S | NA | 2,6-diisopropylphenol |
Sodium chloride | Sigma-Aldrich | 7647-14-5 | NaCl |
Calcium chloride dihydrate | Sigma-Aldrich | 10035-04-8 | CaCl2·2H2O |
Magnesium sulfate heptahydrate | Sigma-Aldrich | 10034-99-8 | MgSO4·7H2O |
Potassium chloride | Sigma-Aldrich | 7447-40-7 | KCl |
Acetone | Sigma-Aldrich | 67-64-1 | Propanone |
Soft cloth | N/A | N/A | Any piece of soft cloth measuring appromixately 70 x 55 cm^2 e.g. a dish towel |
Styrofoam block | N/A | N/A | Any piece of Styrofoam block measuring approximately 33 x 27 x 5 cm^3 e.g. a medium sized Styrofoam cooler lid |
Plastic wrap | N/A | N/A | Any piece of plastic wrap e.g. food wrap |
Tape | BSN Medical | 72359-02 | Leukoplast sleek |
Kimwipes | Sigma-Aldrich | Z188956 | Kimwipes, disposable wipers |
Excel 2010 | Microsoft | N/A | Excel 2010 or newer |
ImageJ | National Institutes of Health | ImageJ 1.5e or newer. Rasband, W.S., ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, https://imagej.nih.gov/ij/, 1997-2016. |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved