A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
This protocol describes fabrication of a cell culture system to allow seeding of stem cells on a conductive polymer scaffold for in vitro electrical stimulation and subsequent in vivo implantation of the stem cell-seeded scaffold using a minimally invasive technique.
Stem cell therapy has emerged as an exciting stroke therapeutic, but the optimal delivery method remains unclear. While the technique of microinjection has been used for decades to deliver stem cells in stroke models, this technique is limited by the lack of ability to manipulate the stem cells prior to injection. This paper details a method of using an electrically conductive polymer scaffold for stem cell delivery. Electrical stimulation of stem cells using a conductive polymer scaffold alters the stem cell's genes involved in cell survival, inflammatory response, and synaptic remodeling. After electrical preconditioning, the stem cells on the scaffold are transplanted intracranially in a distal middle cerebral artery occlusion rat model. This protocol describes a powerful technique to manipulate stem cells via a conductive polymer scaffold and creates a new tool to further develop stem cell-based therapy.
Stroke is the second leading cause of death in the world and the fifth leading cause of death in the United States. Despite these high death rates, treatments for stroke recovery currently remain a challenge with no viable medical options currently available1. There are currently about 300 clinical trials dealing with ischemic strokes, of which only 40 utilize stem cells. Previous studies have shown that stem cell therapies have a beneficial effect on stroke repair2,3. Paracrine factors such as brain-derived neurotrophic factor (BDNF) and thrombospondin-1 (THBS-1) released from transplanted human neural progenitor cells (hNPCs) have shown improved functional recovery through mechanisms associated with an increase in synapse formation, angiogenesis, dendritic branching and new axonal projections, as well as modulating the immune system4,5,6. However, the optimal delivery methods of the stem cells remain elusive.
Successful stem cell delivery to the brain remains a challenge. Currently, injectable hydrogel and polymeric scaffolding systems have been introduced to deliver stem cells. These delivery methods protect stem cells during transplantation as well as offer protection from the harsh post-stroke environment including the host's inflammatory response and hypoxic conditions7,8,9,10. However, the most commonly used materials are inert, which limits the use of continuous modulation (i.e., electrical stimulation) of the cells11. Electrical stimulation is a cue that influences differentiation, ion channel density, and neurite outgrowth of stem cells12. As compared to inert polymers, conductive polymers can carry a current allowing for electrical stimulation and manipulation of stem cells2. However, the precise mechanism by which electrical stimulation modulates neurotrophic factor release (i.e., BDNF and THBS-1) is still not fully explored.
In this protocol, we describe the steps to construct a cell culture system consisting of a conductive polymer scaffold, polypyrrole (PPy), that allows for in vitro electrical stimulation. Because of the manner in which the cell culture system is fabricated, subsequent implantation of the stem cell-seeded scaffold onto the peri-infarct cortex is possible. For this system, we electrically precondition stem cells on the scaffold for a short time period prior to implantation. Following electrical stimulation, the conductive polymer scaffold carrying the cells is successfully implanted intracranially using a minimally invasive method.
All stem cell and animal procedures were approved by Stanford's Stem Cell Research Oversight committee and by Stanford University's Administrative Panel on Laboratory Animal Care (SCRO-616 and APLAC-31909).
1. Etching of ITO Glass
2. Preparation of Pyrrole Solution
3. Electroplating of Polypyrrole on ITO glass
4. Preparation of Polydimethylsiloxane (PDMS)
5. Fabrication of the In Vitro Electrical Stimulation Chamber
6. Plating human Neural Progenitor Cells (hNPCs) on PPy
7. Electrical Stimulation of hNPCs
8. In Vivo PPy Implantation
The schematic shown in Figure 1 represents the overall workflow of the electrical stimulation of hNPCs and potential downstream applications. A current limitation in stem cell therapy is that stem cells are exposed to a harsh post-transplantation environment including inflammation and ischemic conditions. These difficult conditions likely limit their therapeutic efficacy14,15. The use of a conductive ...
Growing evidence has demonstrated the promise of stem cells as a novel stroke therapy. This promise has resulted in a major effort to advance stem cell therapeutics to the bedside with at least 40 ongoing or completed clinical trials. Stroke pathology offers a unique neurological disorder that lends itself to stem cell therapy because after the acute insult, there is no neurodegenerative process preventing recovery. The exact mechanism of stem cell-enhanced stroke recovery remains unclear. Angiogenesis, synaptogenesis, a...
The authors have no conflicts of interest to declare with this work.
We thank Dr. Kati Andreasson (Department of Neurology and Neurological Science, Stanford University) for use of the qRT-PCR machine. The work was supported by National Institutes of Health Grants K08NS098876 (to P.M.G.) and Stanford School of Medicine Dean's Postdoctoral Fellowship (to B.O.).
Name | Company | Catalog Number | Comments |
FGF-Basic | Invitrogen | CTP0261 | 20 ng/mL for working media |
Matrigel | Corning | cb40234a | 1:200 dilution |
LIF Protein, Recom. Hum. (10 µg/mL) | EMD Millipore | LIF1010 | 10 ng/mL for working media |
Sylgard 184 silicone 3.9 kg | Fisherbrand | NC0162601 | |
Hydrochloric acid | Fisherbrand | SA56-4 | |
Nitric Acid Concentrate (Certified) ACS, Fisher Chemical | Fisherbrand | SA95 | |
ITO Glass | Delta Technologies | CG-40IN-0115 | |
Sodium dodecylbenzenesulfonate | Sigma | 289957-1KG | |
Pyrrole | Sigma | 131709-500ML | Protect pyrrole solution from light and room temperature |
8 well glass slide chambers | Thermo Sci Nuc | 125658 | Detach the cell chamber and keep it under sterilized conditions |
Flat-Surface Bracket, 3"x1" | McMaster-Carr | 1030A4 | |
TWO PART SILVER PAINT 14G | Electron Microscopy Sciences | 1264214 | Mix two parts (1:1) in plastic plate |
DPBS, 1x, with Ca and Mg, No Phenol Red | Genesse | 25-508C | |
AB2 ArunA Neural Cell Culture Media Kit | Aruna Biomedical | ABNS7013.2 | |
hNP1 Human Neural Progenitor Expansion Kit | Aruna Biomedical | hNP7013.1 | |
Noncontact Flow-Adjustment Valve, Nickel-Plated Brass, for 3/32" to 5/8" Tube OD | McMaster-Carr | 5330K22 | |
Multimeter | Keysight | E3641A | |
Wavefoam generator | Keysight | 33210A-10MHz | |
Pt meshes | Sigma-Aldrich | 298107-425MG | Reference electrode with dimensions, 1x1 cm |
LIVE/DEAD Viability/Cytotoxicity Kit, for mammalian cells | Thermo Fisher Scientific | L3224 | |
BDNF | Thermo Fisher Scientific | Hs02718934_s1 | |
THBS1 | Thermo Fisher Scientific | Hs00962908_m1 | |
GAPDH | Thermo Fisher Scientific | Hs02758991_g1 | |
RNeasy Mini Kit (250) | Qiagen | 74106 | |
QIAshredder (250) | Qiagen | 79656 | |
RNase-Free DNase Set (50) | QIAGEN | 79254 | |
iScript cDNA Synthesis Kit, 100 x 20 µL rxns | BIORAD | 1708891 | |
TaqMan Gene Expression Master Mix | Thermo Fisher Scientific | 4369510 | |
7-8 Week Old, male, RNU Rats | NCI-Frederick | ||
4-0 Ethicon Silk Suture | eSutures.com | 683G | |
Isoflurane | Henry Schein | 29405 | |
V-1 Tabletop Laboratory Animal Anesthesia System | VetEquip | 901806 | |
Surgicel Original Absorbable Hemostat | Ethicon | 1952 | |
Lab Standard Stereotaxic Instrument, Rat | Stoelting | 51600 | |
Kimberly-Clark Professional Safeskin Purple Nitrile Sterile Exam Gloves | Fisherbrand | 19-063-130 | |
Sterile Drape | Medline | DYNJSD1092 | |
Thermo Scientific Shandon Stainless-Steel Scalpel Blade Handle, Holds No. 20-25 Blades | Fisherbrand | 53-34 | |
Walter Stern Scalpel Blade Series 300 | Fisherbrand | 17-654-456 | |
QuantStudio 6 Flex Real-Time PCR System | Thermo Fisher Scientific | 4484642 | |
Frazier Micro Dissecting Hook | Harvard Apparatus | 52-2706 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved