JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here, we present a protocol to visualize immune cells embedded in a three-dimensional (3D) collagen matrix using light-sheet microscopy. This protocol also elaborates how to track cell migration in 3D. This protocol can be employed for other types of suspension cells in the 3D matrix.

Abstract

In vivo, activation, proliferation, and function of immune cells all occur in a three-dimensional (3D) environment, for instance in lymph nodes or tissues. Up to date, most in vitro systems rely on two-dimensional (2D) surfaces, such as cell-culture plates or coverslips. To optimally mimic physiological conditions in vitro, we utilize a simple 3D collagen matrix. Collagen is one of the major components of extracellular matrix (ECM) and has been widely used to constitute 3D matrices. For 3D imaging, the recently developed light-sheet microscopy technology (also referred to as single plane illumination microscopy) is featured with high acquisition speed, large penetration depth, low bleaching, and photocytotoxicity. Furthermore, light-sheet microscopy is particularly advantageous for long-term measurement. Here we describe an optimized protocol how to set up and handle human immune cells, e.g. primary human cytotoxic T lymphocytes (CTL) and natural killer (NK) cells in the 3D collagen matrix for usage with the light-sheet microscopy for live cell imaging and fixed samples. The procedure for image acquisition and analysis of cell migration are presented. A particular focus is given to highlight critical steps and factors for sample preparation and data analysis. This protocol can be employed for other types of suspension cells in a 3D collagen matrix and is not limited to immune cells.

Introduction

Most knowledge about migrating cells comes from 2D experiments1,2,3, which are normally conducted in a glass or plastic surface of a culture/imaging dish. However, a physiological scenario requires, in most cases, a 3D microenvironment, in which the extracellular matrix (ECM) plays a decisive role. ECM not only provides the 3D structure essential to maintain proper cell morphology but also offers survival signals or directional cues for an optimal functioning of many cells4,5 . Therefore, a 3D environment is required to better identify cellular functions and behavior in an environment better reflecting the physiological context.

In the human body, most cells especially immune cells, exert their functions under a 3D scenario. For example, activated T cells patrol tissues searching for target cells, naïve T cells migrate through lymph nodes in search for their cognate antigen-presenting cells during which the migration mode and machinery are adapted to the corresponding extracellular environment3,6,7. The 3D collagen gel has been widely used as a well-established and well-characterized 3D cell culture system8,9,10. Our previous work shows that primary human lymphocytes are highly mobile and migrate at an average speed of around 4.8 µm/min in a 0.25 % collagen-based matrix11. Rearrangement of cytoskeleton plays a key role in the cell migration12. Accumulating evidence shows that lymphocytes do not apply only a single mode of migration yet can switch between certain migration behavior depending on the location, microenvironment, cytokines, chemotactic gradients, and extracellular signals which tune the migratory behavior in different ways 3.

To reliably analyze immune cell functions and behavior, for example, migration, protrusion formation or vesicular transportation, it is of great advantage to be able to acquire images in relatively large 3D volumes in a fast and reliable manner. For 3D imaging, the recently developed light-sheet microscopy technology (also referred to as single plane illumination microscopy) offers a satisfactory solution13,14. During imaging acquisition, a thin static light sheet is generated to illuminate the sample. In this way, on the focus plane, a large area can be illuminated simultaneously without affecting the off-plane cells. This feature enables a high acquisition speed with a drastically reduced bleaching and photocytotoxicity. In this paper, we describe how to visualize primary human immune cells using light-sheet microscopy and how to analyze the migration in a 3D scenario.

Protocol

Research carried out for this study with the human material (leukocyte reduction system chambers from human blood donors) is authorized by the local ethics committee (declaration from 16.4.2015 (84/15; Prof. Dr. Rettig-Stürmer)) and follows the corresponding guidelines.

1. Preparation of Neutralized Collagen Solution (500 µL)

  1. Transfer 400 µL of chilled collagen stock solution (10.4 mg/mL) to a sterile 1.5 mL tube under the cell culture hood. Slowly add 50 µL of chilled 10x PBS (pH 7.0 - 7.3) to 400 µL of chilled collagen stock solution. Mix the solution by gently tiling the tube.
    Note: All steps in Part 1 should be done under a cell culture hood.
  2. Add 8 µL of 0.1 M NaOH into 500 µL of the collagen solution from 1.1. to adjust the pH to 7.2-7.6. Use pH test strips (pH range: 6 - 10) to determine the pH value of the mixture.
    Note: Volumes may vary for different batches of collagen. NaOH solution has to be mixed slowly to avoid air bubbles. The mixture should be kept on ice to avoid collagen gelation.
  3. Add 2 µL of sterile ddH2O to make the final volume to 500 µL. Mix well and store this collagen solution (8.32 mg/mL) on ice or at 4 °C until further use.
    Note: Under this condition, neutralized collagen can be used for 24 h. Aliquots are not recommended to avoid air bubbles.

2. Sample Preparation for Light-sheet Fluorescence Microscopy Using Capillaries

  1. Fluorescently label the live cells of interest with the desired primary fluorescent dyes15 or fluorescent proteins11 as described previously.
  2. Transfer 1 × 106 of cells into a sterile 1.5 mL tube under a cell culture hood. Centrifuge the tube at 200 x g for 8 min. Discard the supernatant and resuspend the pellet in 200 µL of culture medium.
    Note: The cell density of 5 × 106 cells/mL is recommended for visualization of human immune cell migration, especially for cytotoxic T lymphocytes (CTL) and natural killer (NK) cells.
  3. Add 85.9 µL of neutralized collagen solution from 1.3. into the cell suspension from 2.2. and mix properly to reach a collagen concentration of 2.5 mg/mL. Leave the cell/collagen mix on ice in the hood.
    Note: Suppose the desired concentration of collagen is N mg/mL, the volume of neutralized collagen solution (for 200 µL cell suspension) = 200 × N/(8.32 - N)
  4. Next, put the matching plunger into the capillary (inner diameter ~1 mm) until the plunger is 1 mm out of the capillary. Wet the plunger by dipping into culture medium (Figure 1A).
    Note: This step could help to prevent air bubbles when the capillary is dipped into the cell/collagen mix. The capillary and the plunger do not have to be sterile.
  5. Dip the capillary into the cell/collagen mix from 2.3. Slowly pull the plunger back for 10 - 20 mm (Figure 1B). Wipe the outer wall of the capillary with a paper towel moistened with 70% ethanol spray to remove the remaining collagen solution.
  6. Mount the capillary with modeling clay on the inner wall of a 5 mL tube and push the cell/collagen mix to the edge of the capillary (Figure 1C).
  7. Keep the capillary at 37 °C with 5% CO2 for 1 h for collagen polymerization.
  8. Add the culture medium (around 1 - 2 mL) to a 5 mL tube. Carefully press the polymerized collagen rod out into the medium to around 3/4 of the collagen hanging in the medium (Figure 1D).
  9. Keep the capillary, like this, at 37 °C with 5% CO2 for another 30 min to equilibrate the collagen rod with the medium.
    Note: Afterwards, the collagen rod can be pulled back into the capillary and cultured further before further use.

3. Image Acquisition using Light-sheet microscopy

  1. Assembly the sample chamber according to the manufacturer’s instruction.
  2. Turn on the incubation and the microscope to heat the sample chamber to 37 °C (for live cell imaging only).
  3. Place the capillary in the sample chamber and locate the sample to find the area of interest for image acquisition.
  4. Activate the corresponding laser(s). Set the following settings: laser power, exposure time, step-size of z-stack, start and end position of z-stack, and the time interval for live cell imaging.
    Note: For example, the sample in Figure 2 was imaged every 40 s for 6 h at 37 °C with a step-size of 1 µm (total thickness: 538 µm). The laser power was 1% with an exposure time of 30 ms. The pixel size at x-y direction is 0.23 µm.
  5. Start the image acquisition.

4. Automated Tracking Analysis

  1. Open the file converter, click Add Files to choose the imaging file(s) to be converted into the software file format (*.ims). Click Browse and select a folder to save the converted file(s). Click Start All.
  2. Open the analysis software. Click Surpass. Go to File and click Open, then choose the imaging file to be analyzed.
    Note: If the file size is big this step may take time. Files larger than 1 Terabyte (TB) are not recommended for a single experiment as the process such big files are highly computational capacity demanding.
  3. Click Add New Spots. Check the box Process Entire Image Finally. Click Next.
  4. Enter the coordinates for x and y (in pixel) to define the region of interest. Enter the number of frames (time and z-position) to analyze. Click Next.
  5. Select the target channel, which contains the objects to be tracked, in the Dropdown list of Source Channel. Enter Estimated xy Diameter (in µm). Click Next.
    Note: Estimated xy diameter is the average diameter in the x-y dimension of objects to be tracked.
  6. Click Quality. Set a threshold, in which most of the cells (objects) should be included. Click Next
  7. Choose the desired algorithm (Autoregressive Motion is recommended). Enter the max distance (20 µm is recommended) and the max gap size (3 or 2 is recommended). Click Process Entire Image finally.
    Note: Max distance and Max gap size are two thresholds to break tracks. More specifically, in two continuous frames when the distance between the same object exceeds the Max distance, this object in the later frame will be considered as a new object. Sometimes during acquisition, the same object may disappear for a few frames and show up again. In this case, only when this object reappears within the Max gap size, it will be considered as the same object.
  8. Click Filter Type and choose the option to exclude undesired tracks.
    Note: This step is optional.
  9. Click Next and then click Finish.
    Note: This step can take hours up to days depending on computing performance.
  10. Click Edit Tracks and choose Correct Drift. Select the appropriate algorithm (Translational Drift is recommended). Select the desired Result Dataset Size (New Size Equal to Current Size is recommended). Click OK.
    Note: This step is only required when the collagen drifted during image acquisition.
  11. Click Statistics and choose Configure List of Visible Statistics Values. Check the options of interest to be exported (e.g. coordinates, speed and so on). Click OK.
  12. Click Export All Statistics to File and enter the file name.

5. Fixation and Immunofluorescence Staining of Cells in Collagen Matrices

  1. Transfer 1,000 µL of 4% paraformaldehyde (PFA, in PBS) into a 5 mL tube under a chemical hood.
    Note: PFA should be balanced to room temperature.
  2. Dip the capillary with polymerized collagen from 2.9. into PFA solution (for ~ 5 mm) and mount the capillary on the inner wall of the 5 mL tube with modeling clay (as shown in Figure 1C).
  3. Press the plunger gently until half of the collagen rod is hanging in the PFA solution (Figure 1D). Keep the tube at room temperature for 20 min.
  4. Pull back the plunger to get the collagen rod inside the capillary. Take out the capillary and discard PFA.
  5. Mount the capillary into a fresh tube and add 1 mL of PBS. Make sure that the capillary is immersed in the PBS.
  6. Press the plunger gently until half of the collagen rod is hanging in the solution. Mount the capillary on the inner wall with modeling clay.
  7. Keep the tube at room temperature for 5 min.
  8. Repeat 5.4. - 5.7 for another 2 times.
  9. Pull back the plunger to get the collagen rod inside the capillary. Discard PBS. Transfer 1 - 2 mL of blocking/permeabilization buffer (PBS + 1-% BSA + 0.1% non-ionic surfactant) into the tube and repeat 5.6.
    Note: The BSA (1%) can be replaced by 5% serum of the animal the secondary Ab was raised in.
  10. Keep the tube at room temperature for 30 - 60 min.
  11. Pull back the plunger to get the collagen rod inside the capillary. Discard the permeabilization buffer. Transfer 200 - 500 µL of the primary antibody in blocking/permeabilization buffer and expels the rod into the solution.
  12. Keep the tube at room temperature for 1 h.
  13. Wash the collagen rod 3 times with PBST (PBS + 0.1-% non-ionic surfactant) as described in 5.4. - 5.8.
  14. Incubate the rod in secondary antibody in blocking/permeabilization buffer for 1 h at room temperature. Keep it from light.
  15. Wash the collagen rod 3 times with PBS as described in 5.4. - 5.8.
  16. Pull back the plunger to get the collagen rod inside the capillary. Keep the samples in PBS until imaging.
  17. Scan the samples as described in 3.

Results

Protrusion formation during T cell migration is a highly dynamic process, which is actin dependent. To visualize protrusion formation of primary human CTL, we transiently transfected a mEGFP fused protein to label the actin cytoskeleton in CTL as described before11. One day after transfection, the cells were embedded in the collagen matrix. Image stacks were acquired every 40 s with a step-size of 1 µm at 37 °C using light-sheet microscopy. As shown in

Discussion

Most in vitro assays are carried out on a 2D surface, for example in cell-culture plates, Petri-dishes or on coverslips, whereas in vivo cells, especially immune cells, experience mostly a 3D microenvironment. Emerging evidence shows that migration patterns of immune cells differ between 2D and 3D scenarios17. Moreover, the expression profiles of tumor cells are also different in 2D- and 3D-cultured tissues18,19,

Disclosures

The authors declare no financial or commercial conflict of interest.

Acknowledgements

We thank the Institute for Clinical Hemostaseology and Transfusion Medicine for providing donor blood; Carmen Hässig and Cora Hoxha for excellent technical help. We thank Jens Rettig (Saarland University) for the modified pMAX vector, Roland Wedlich-Söldner (University of Muenster) for the original LifeAct-Ruby construct, and Christian Junker (Saarland University) for generating the LifeAct-mEGFP construct. This project was funded by Sonderforschungsbereich 1027 (project A2 to B.Q.) and 894 (project A1 to M.H.). The light-sheet microscope was funded by DFG (GZ: INST 256/4 19-1 FUGG).

Materials

NameCompanyCatalog NumberComments
Fibricol, bovine collagen solutionAdvanced Biomatrix #5133-20MLCollagen matrix
0.5 M NaOH SolutionMerck1091381000for neutralizing Fibricol solution
Ultra-Low melting agaroseAffymetrix32821-10GMSample preparation in low c[Col]
Dynabeads Untouched Human CD8 T Cells KitThermo Fisher11348DIsolation of primary human CD8+ T cells from PBMC
Dynabeads Human T-Activator CD3/CD28 for T Cell Expansion and ActivationThermo Fisher11132DActivation of CTL populations
Human recombinant interleukin-2Thermo FisherPHC0023Stimulation of cultured CTL
P3 Primary solution kitLonzaV4XP-30XXTransfection
α-PFN1 antibody, rabbit, IgGAbcamab124904IF
Alexa Fluor 633 PhalloidinThermo FisherA22284IF
CellMask Orange Plasma membrane StainThermo FisherC10045Fluorescent cell label
Tween 20SigmaP1379-250mLIF
Triton X-100Eurobio018774IF
DPBS Dulbecco's phopsphate buffered salineThermo Fisher14190250IF
Bovine serum albuminSigmaA9418-100GIF
Goat α Rabbit 568, IgG, rabbitThermo FisherA-11011IF
Lightsheet Z.1 (Light-sheet microscopy)ZeissN.A.
Cell culture hoodThermo FisherHeraSafe KS
Cell culture incubator HERACell 150i Thermo FisherN.A.
Centrifuge 5418 and 5452EppendorfN.A.
PippettesEppendorf3123000039, 3123000020, 3123000063
Pippette tipsVWR89079-444, 89079-436, 89079-452 
15 mL tubesSarstedt 62.554.002
Capillaries 50 µLVWR (Brand)613-3373Zeiss LSFM sample preparation
Plunger for capillariesVWR (Brand)BRND701934"Stamps with Teflon tip" LSFM sample preparation
MColorPhast pH stipsMerck1095430001to test pH of neutralized Fibricol
BD Plastipak 1mL syringesBDZ230723 ALDRICHAlternative sample preparation
Modeling clay (Hasbro Play-Doh A5417EU7)Play-DohN.A.
Imaris file converterBitplaneavailable at http://www.bitplane.com Convert imaging files to Imaris file format
Imaris 8.1.2 (MeasurementPro, Track, Vantage)Bitplaneavailable at http://www.bitplane.com Analysis of 3D and 4D imaging data

References

  1. Decaestecker, C., Debeir, O., Van Ham, P., Kiss, R. Can anti-migratory drugs be screened in vitro? A review of 2D and 3D assays for the quantitative analysis of cell migration. Med Res Rev. 27 (2), 149-176 (2007).
  2. Doyle, A. D., Petrie, R. J., Kutys, M. L., Yamada, K. M. Dimensions in cell migration. Curr Opin Cell Biol. 25 (5), 642-649 (2013).
  3. Krummel, M. F., Bartumeus, F., Gerard, A. T cell migration, search strategies and mechanisms. Nat Rev Immunol. 16 (3), 193-201 (2016).
  4. Entschladen, F., et al. Analysis methods of human cell migration. Exp Cell Res. 307 (2), 418-426 (2005).
  5. Meredith, J. E., Fazeli, B., Schwartz, M. A. The extracellular matrix as a cell survival factor. Mol Biol Cell. 4 (9), 953-961 (1993).
  6. Friedl, P., Wolf, K. Plasticity of cell migration: a multiscale tuning model. J Cell Biol. 188 (1), 11-19 (2010).
  7. Ridley, A. J., et al. Cell migration: integrating signals from front to back. Science. 302 (5651), 1704-1709 (2003).
  8. Shamir, E. R., Ewald, A. J. Three-dimensional organotypic culture: experimental models of mammalian biology and disease. Nat Rev Mol Cell Biol. 15 (10), 647-664 (2014).
  9. Ravi, M., Paramesh, V., Kaviya, S. R., Anuradha, E., Solomon, F. D. 3D cell culture systems: advantages and applications. J Cell Physiol. 230 (1), 16-26 (2015).
  10. Fang, Y., Eglen, R. M. Three-Dimensional Cell Cultures in Drug Discovery and Development. SLAS Discov. 22 (5), 456-472 (2017).
  11. Schoppmeyer, R., et al. Human profilin 1 is a negative regulator of CTL mediated cell-killing and migration. Eur J Immunol. 47 (9), 1562-1572 (2017).
  12. Mogilner, A., Oster, G. Cell motility driven by actin polymerization. Biophys J. 71 (6), 3030-3045 (1996).
  13. Santi, P. A. Light sheet fluorescence microscopy: a review. J Histochem Cytochem. 59 (2), 129-138 (2011).
  14. Power, R. M., Huisken, J. A guide to light-sheet fluorescence microscopy for multiscale imaging. Nat Methods. 14 (4), 360-373 (2017).
  15. Zhou, X., et al. Bystander cells enhance NK cytotoxic efficiency by reducing search time. Sci Rep. 7, 44357 (2017).
  16. Lammermann, T., et al. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature. 453 (7191), 51-55 (2008).
  17. Petrie, R. J., Yamada, K. M. At the leading edge of three-dimensional cell migration. J Cell Sci. 125 (Pt 24), 5917-5926 (2012).
  18. Imamura, Y., et al. Comparison of 2D- and 3D-culture models as drug-testing platforms in breast cancer). Oncol Rep. 33 (4), 1837-1843 (2015).
  19. Lee, J. M., et al. A three-dimensional microenvironment alters protein expression and chemosensitivity of epithelial ovarian cancer cells in vitro. Lab Invest. 93 (5), 528-542 (2013).
  20. Luca, A. C., et al. Impact of the 3D microenvironment on phenotype, gene expression, and EGFR inhibition of colorectal cancer cell lines. PLoS One. 8 (3), e59689 (2013).
  21. Jemielita, M., Taormina, M. J., Delaurier, A., Kimmel, C. B., Parthasarathy, R. Comparing phototoxicity during the development of a zebrafish craniofacial bone using confocal and light sheet fluorescence microscopy techniques. J Biophotonics. 6 (11-12), 920-928 (2013).
  22. Graf, B. W., Boppart, S. A. Imaging and analysis of three-dimensional cell culture models. Methods Mol Biol. 591, 211-227 (2010).
  23. Helmchen, F., Denk, W. Deep tissue two-photon microscopy. Nat Methods. 2 (12), 932-940 (2005).
  24. Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J., Stelzer, E. H. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science. 305 (5686), 1007-1009 (2004).
  25. Verveer, P. J., et al. High-resolution three-dimensional imaging of large specimens with light sheet-based microscopy. Nat Methods. 4 (4), 311-313 (2007).
  26. Truong, T. V., Supatto, W., Koos, D. S., Choi, J. M., Fraser, S. E. Deep and fast live imaging with two-photon scanned light-sheet microscopy. Nat Methods. 8 (9), 757-760 (2011).
  27. Haycock, J. W. 3D cell culture: a review of current approaches and techniques. Methods Mol Biol. 695, 1-15 (2011).
  28. Mestas, J., Hughes, C. C. Of mice and not men: differences between mouse and human immunology. J Immunol. 172 (5), 2731-2738 (2004).

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Light sheet MicroscopyThree dimensional VisualizationHuman Immune CellsImmunologyCell BehaviorPhysiologically Relevant ContextCollagenFluorescent LabelingCell CultureCapillaryImaging

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved