Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The MDS diagnosis is difficult in the absence of morphological criteria or non-informative cytogenetics. MFC could help refine the MDS diagnostic process. To become useful for clinical practice, the MFC analysis must be based on parameters with sufficient specificity and sensitivity, and data should be reproducible between different operators.

Abstract

A working group initiated within the French Cytometry Association (AFC) was developed in order to harmonize the application of multiparameter flow cytometry (MFC) for myeloid disease diagnosis in France. The protocol presented here was agreed-upon and applied between September 2013 and November 2015 in six French diagnostic laboratories (University Hospitals of Saint-Etienne, Grenoble, Clermont-Ferrand, Nice, and Lille and Institut Paoli-Calmettes in Marseille) and allowed the standardization of bone marrow sample preparation and data acquisition. Three maturation databases were developed for neutrophil, monocytic, and erythroid lineages with bone marrow from "healthy" donor individuals (individuals without any evidence of a hematopoietic disease). A robust method of analysis for each myeloid lineage should be applicable for routine diagnostic use. New cases can be analyzed in the same manner and compared against the usual databases. Thus, quantitative and qualitative phenotypic abnormalities can be identified and those above 2SD compared with data of normal bone marrow samples should be considered indicative of pathology. The major limitation is the higher variability between the data achieved using the monoclonal antibodies obtained with the methods based on hybridoma technologies and currently used in clinical diagnosis. Setting criteria for technical validation of the data acquired may help improve the utility of MFC for MDS diagnostics. The establishment of these criteria requires analysis against a database. The reduction of investigator subjectivity in data analysis is an important advantage of this method.

Introduction

In the absence of phenotypic markers specific to the dysplastic changes occurring in myeloid cells during MDS initiation and progression, a new approach has been proposed in recent years based on the evaluation of the maturation pathways (altered expression of myeloid antigens during the production of mature myeloid cells) or of the abnormal distribution of different cell types within bone marrow (BM) cell compartments1,2.

This article presents a new method for standardized application of MFC in order to detect dysplastic changes in BM myeloid cell compartments related to myelodyspl....

Protocol

The protocol listed below has been approved by the "Comité de Protection des Personnes" (Independant Ethics Committee) Sud-Est 1 from University Hospital of Saint-Etienne, France.

1. Cytometer Settings

NOTE: The cytometer settings were performed according to France Flow recommendations, in accordance with EuroFlow Procedure "EuroFlow Standard Operating Protocol (SOP) for Instrument Setup and Compensation (https://www.euroflow.org/usr/pub/protocols.php.......

Representative Results

The 54 BM samples harvested in K-EDTA anticoagulant were included in the study. The MFC data were analyzed in the absence of any information about the patients. Retrospective study showed that the BM samples were from 7 healthy donors (5 males and 2 females with a median age of 47.4 [35-48], 11 individuals with no evidence of a hematopoietic disease (8 males and 3 females with a median age of 57.9 [35-72]) and 36 cases with various pathological conditions: 1 case with anemia and low creat.......

Discussion

The quality of BM aspirate could impact on the final results. The hemodilution of the BM aspirate could distort the distribution of cells in different stages of maturation due to the absence of progenitors or precursors cells. Probably employing a bulk lysing method may help in normalization of BM aspirates for hemodilution in flow cytometric analyses. In addition, the critical steps for the evaluation of BM myeloid dysplasia by flow-cytometry are the sample processing and staining, data acquisition, and interpretation

Acknowledgements

The antibodies used in this study were provided by BD Biosciences. The authors would like to thank their colleague, Dr. Pascale Flandrin-Gresta, from the Department of Molecular Biology, Hematology laboratory, University Hospital of Saint-Etienne, France, who provided expertise for interpretation of NGS data for the second MDS case. The authors are thankful for the clinician hematologists for their interest and involvement in this study and for the patients and healthy donors for their agreement to participate in this study. The authors would also like to thank the "Les Amis de Rémi" Foundation for financial support for publication.

....

Materials

NameCompanyCatalog NumberComments
BD FACSCanto II flow-cytometerBD Biosciences, CA, USASN: V338963013363-laser, 4-2-2 configuration, Filters and mirrors details: https://www.bdbiosciences.com/documents/BD_FACSCanto_II_FilterGuide.pdf
Awel C48-R CentrifugeAWEL Industries, FRSN: 910120016; Model No: 320002001low speed centrifuges; capacity 60 FACS tubes
Pipetts of 10µl and 200µl
Pasteur pipettes
15 mL Falcon tubes
polypropylene tube for FACS
Mouse Anti-Human HLA-DRBD Biosciences, CA, USA655874clone L243
Mouse BALB/c IgG2a, κ
Fluorochrome Horizon V450
(Ex max 404 nm/
Em max 448 nm)
Mouse Anti-Human CD45BD Biosciences, CA, USA560777clone HI30
Mouse IgG1, κ
Fluorochrome Horizon V500 (Ex max 415 nm/
Em max 500 nm)
Mouse Anti-Human CD16BD Biosciences, CA, USA656146clone CLB/fcGran1 Mouse BALB/c IgG2a, κ
Fluorochrome FITC
(Ex max 494 nm/
Em max 520 nm)
Mouse Anti-Human CD13BD Biosciences, CA, USA347406clone L138
Mouse BALB/c X C57BL/6 IgG1, κ
Fluorochrome PE
(Ex max 496 nm/
Em max 578 nm)
Mouse Anti-Human CD34BD Biosciences, CA, USA347222clone 8G12
Mouse BALB/c IgG1, κ
Fluorochrome PerCP-Cy5.5
(Ex max 482 nm/
Em max 678 nm)
Mouse Anti-Human CD117BD Biosciences, CA, USA339217clone 104D2
Mouse BALB/c IgG1
Fluorochrome PE-Cy7
(Ex max 496 nm/
Em max 785 nm)
Mouse Anti-Human CD11bBD Biosciences, CA, USA333143clone D12
Mouse BALB/c IgG2a, κ
D12, Fluorochrome APC
(Ex max 650 nm/
Em max 660nm
Mouse Anti-Human CD10BD Biosciences, CA, USA646783clone HI10A
Mouse BALB/c IgG1, κ
Fluorochrome APC-H7
(Ex max 496 nm/
Em max 785nm)
Mouse Anti-Human CD35BD Biosciences, CA, USA555452clone E11
Mouse IgG1, κ
Fluorochrome FITC
(Ex max 494 nm/
Em max 520 nm)
Mouse Anti-Human CD64BD Biosciences, CA, USA644385clone 10.1
Mouse BALB/c IgG1, κ
Fluorochrome PE
(Ex max 496 nm/
Em max 578 nm)
Mouse Anti-Human CD300eImmunostepIREM2A-T100clone UP-H2
Mouse BALB/c IgG1, k
Fluorochrome APC
(Ex max 496 nm/
Em max 578 nm)
Mouse Anti-Human CD14BD Biosciences, CA, USA641394clone MoP9
Mouse BALB/c IgG2b, κ
Fluorochrome APC-H7
(Ex max 496 nm/
Em max 785nm)
Mouse Anti-Human CD36BD Biosciences, CA, USA656151clone CLB-IVC7
Mouse IgG1, κ
Fluorochrome FITC
(Ex max 494 nm/
Em max 520 nm)
Mouse Anti-Human CD105BD Biosciences, CA, USA560839clone 266
Mouse BALB/c IgG1, κ
Fluorochrome PE
(Ex max 496 nm/
Em max 578 nm)
Mouse Anti-Human CD33345800clone P67.6
Mouse BALB/c IgG1, κ
Fluorochrome APC
(Ex max 496 nm/
Em max 578 nm)
Mouse Anti-Human CD71BD Biosciences, CA, USA655408clone M-A712
Mouse BALB/c IgG2a, κ
Fluorochrome APC-H7
(Ex max 496 nm/
Em max 785nm)
Lysing Solution 10X Concentrate (IVD)BD Biosciences, CA, USA349202
FACSFlow Sheath FluidBD Biosciences, CA, USA342003
FACSDiva CS&T IVD beadsBD Biosciences, CA, USA656046
RAINBOW CALIBRATION PARTICLES, 8 PEAKSCytognos, Salamanca, SpainSPH-RCP-30-5Alots EAB01, EAC01, EAD05, EAE01, EAF01, EAG01, EAH01, EAI01, EAJ01, EAK01
Compensation Particles Multicolor CompBeads(CE/IVD)BD Biosciences, CA, USAref. #51-90-9001229 + #51-90-9001291
Diva software versions 6.1.2 and 6.1.3BD Biosciences, CA, USA
Phosphate buffered saline tabletsR&D Systems, Minneapolis, USA5564
Bovine serum albumin (BSA)Sigma-Aldrich, FranceA9647
Sodium azide 99%Sigma-Aldrich, France199931
Infinicyt software version 1.8.0.eCytognos, Salamanca, Spain

References

  1. Orfao, A., Ortuño, F., de Santiago, M., Lopez, A., San Miguel, J. Immunophenotyping of Acute Leukemias and Myelodysplastic Syndromes. Cytometry Part A. 58, 62-71 (2004).
  2. Porwit, A., et al.

Explore More Articles

Flow CytometryBone MarrowMyeloid Cell MaturationMyelodysplasiaHematological DiseasesCell Surface MarkersCell LineagesQuantificationData AnalysisFlow Cytometer

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved