JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here, we present a protocol to establish a replicable conductive hearing loss induction via surgical tympanic membrane puncture and verification by otoscope visualization and behavioral assessment by clap startle.

Abstract

Conductive hearing loss (CHL) is a prevalent hearing impairment in humans. The goal of the protocol is to describe a simple surgical procedure for inducing CHL in rodents. The protocol demonstrates CHL by tympanic membrane puncture. Verification of CHL surgery was by otoscope examination and behavioral assessment by clap startle response, both replicable and reliable, and are simple methods to demonstrate hearing loss has occurred. The simple CHL procedure is advantageous due to its reproducibility and flexibility to different pursuits in hearing loss research. The limitations of inducing CHL by a surgical approach are associated with the learning curve to perform the surgical procedure and confidence in audiological examination. Inducing a hearing impairment by CHL allows one to readily study the neural manifestations and behavioral outcomes of hearing loss.

Introduction

The prevalence of the hearing loss in children and adults is approximately 19.5%1 and 15.2%2 respectively. However, approximately 39.3% of all newborns with an abnormal hearing screening do not receive remedial treatment as reported by the Centers for Disease Control3. Hearing loss is a widely studied condition, and the rodent is a robust model to study normal hearing and hearing related disorders4,5,6,7,8,9,10,11,12,13,14,15. Hearing disorders such as conductive hearing loss (CHL) lead to an increase in the short term synaptic depression in the auditory cortex4, which results in shallower psychometric slopes associated with frequency modulation detection thresholds5. Conductive hearing loss models by surgical removal/displacement of the malleus, tympanic membrane (TM) puncture or earplug are easily employed and allow the rapid induction of the hearing loss model5,14,15,16,17,18. The goal of the present protocol and method is to demonstrate a simple and reproducible CHL model in rodents.

The present protocol is inexpensive (≈USD$300 with all tools), and readily amendable to different research pursuits. The rat has had detailed assessments of middle ear anatomy19,20,21,22,23, surgical approaches24, models in otitis media25,26,27 and TM puncture regeneration16,17,18,28,29,30, making it an ideal model to study hearing loss. Here, a simple CHL induction procedure is described with verification by otoscope and behavioral assessment with clap startle response in rat, which then may be used to explore additional sequelae of hearing loss. The CHL procedure is induced by surgical puncture of the TM. Verification of the CHL procedure is performed by otoscope visualization to determine absence of the TM. Behavioral assessment is performed by a high decibel (dB) sound pressure level (SPL) hand-clap. This method has been applied previously in a variety of rodents. It is easy to replicate, produces robust psychometric differences and changes in neural physiological responses4,5,16,17,18.

Access restricted. Please log in or start a trial to view this content.

Protocol

The present study and procedures were approved by the animal research ethics committees of the City University of Hong Kong, the University of Hong Kong, and the Department of Health of the Hong Kong Special Administrative Region.

1. Animals

  1. Use Sprague-Dawley (SD) rats of two months (N = 90, 200-250 g).
    NOTE: Rodents were provided by the accredited Laboratory Animal Unit of the University of Hong Kong.
  2. Maintain the rats under a constant 25 °C temperature and 60-70% humidity at the Laboratory Animal Research Unit.
  3. House rodents in 12/12-h light/dark cycles with access to food and drinking water, ad libitum.
  4. Acclimate rodents to the housing environment for at least one day prior to CHL surgery.
  5. Pick up the rodent by the scruff and anesthetize the rodent with a cocktail of ketamine and xylazine (80-100 mg/kg: 5-10 mg/kg, respectively) via intraperitoneal injection (combine 1.0 mL of ketamine with 0.5 mL of xylazine as a final concentration).
    NOTE: Use a 1 mL of syringe with a 23-25G needle. Inject approximately 0.2 mL per 100 g body weight of the rat for 30 min of anesthesia.
  6. Perform the toe pinch to verify pain sensation and to corroborate proper anesthesia. A reaction to deep toe pinch (by withdrawal of hind limb) indicates insufficient anesthesia.

2. Surgical setup

  1. Sterilize all equipment in an autoclave or hot glass bead sterilizer prior to beginning surgery. Clean the surgical area with 70% ethanol.
  2. Use latex gloves and lab coat before starting the procedure.
  3. Place a sterile surgical drape on the clean bench (Figure 1A).
  4. Sterilize micro-scissors and an otoscope prior to the surgery to minimize ear infection (Figure 1B).
  5. Place the micro-scissors and otoscope in the sterile area.
  6. Place the rodent in the surgical field and in alignment with the surgeon.
  7. Proceed with the surgical induction of CHL.

3. Surgical induction of conductive hearing loss

  1. Place the tail and the head of the rodent aligned in a prone position, head closest to the surgeon.
  2. Visualize the left and right ear of the rodent under otoscope to ensure healthy tympanic membrane (Figure 2a). Evaluate both the right and left ear of every rodent to verify the healthy condition prior to the CHL induction.
  3. Grab the ear helix and extend the external auditory canal (i.e., ear canal, external auditory meatus, herein auditory canal) to cause the inside to become obscured and blackened by depth. Here, the auditory canal is made perpendicular to the surface of the TM.
    NOTE: Ensure the auditory cannel is directly parallel now and the TM forms a right angle with the axis of insertion of the micro-scissors. It will be visualized as a black tube without light. Sometimes the auditory canal needs to be tilted at a slight angle, approximately 15° to the planar surface of the skull. This ensures the surgeon hand is perpendicular to the surface of the TM.
  4. Introduce the micro-scissors in the center of the auditory canal paying attention not to skim or nick the tissue of the auditory canal and proceed slightly, approximately ≈5 mm from the center of obscurity, thrusting forward gently through the center of the TM.
    NOTE: TM puncture can be confirmed by a pop sound when the micro-scissor tips puncture the TM. The popping sound can be heard at approximately ≈ 2 min 52 s in the video. This is not a scissor sound; this is a TM puncture sound. As measured post-analysis, the "pop" is approximately ≈ 20 dB SPL greater than background sound as recorded by a high frequency microphone. There is no need to verify the "pop" sound to this extent, otoscope visualization is sufficient. The investigator may need to practice ensuring a 'pop' is heard during each CHL procedure.
  5. Immediately open the spring-loaded micro-scissors and rotate three times after puncturing the TM to ensure displacement of the head of the malleus away from the TM (only if malleus displacement is desired).
  6. Remove the micro-scissors and place the rodent under the otoscope for visualization.
    NOTE: It is important to note that no significant bleeding should occur after the surgical procedure. Euthanize the rodent and do not proceed to behavioral assessment if bleeding occurs.
  7. Induce bilateral CHL by proceeding as above in the opposite ear.

4. Otoscope visualization

  1. Confirm a successful CHL surgery with an otoscope using a small diameter speculum to visualize the rodent middle ear.
  2. Evaluate every rodent prior to and after the CHL surgical procedure underneath the otoscope. Ensure confirmation of normal TM (Figure 2a) and damaged TM after CHL induction (Figure 2b).
  3. Post-operative care for the rodent
    1. Place the rodent in home cage under a warm lamp.
    2. Observe the rodent post-CHL induction until the rodent rights itself.
    3. Inject the rodent with glucose (dextrose/saline) serum to recover consciousness and place rodent in homecage for recovery.
      NOTE: Use a 23G needle with a 10 mL syringe to inject 5 mL of saline after CHL surgery.
    4. Inject the rodent via intramuscular with anti-bacterial Enrofloxacin 0.05 mg/kg twice during the 24 h recovery period.
    5. Observe the rodent regularly for pain behavior or symptoms after surgery.

5. Behavioral assessment (validation of CHL induction) - clap startle response

  1. Corroborate CHL (after otoscope confirmation) 24 h post-surgery with the behavioral assessment consisting of the clap-startle-test.
  2. Place the CHL induced rat next to a normal rat in two separate adjoining cages.
  3. Place the rodents in a silent room.
  4. Stand approximately 0.5 m away from the rodents and proceed to clap in equally spaced durations a number of times (5 claps were chosen and spaced over 1 second).
    NOTE: The clap startle produced by the hand clap measured ≈ 40 dB SPL greater than background sound as recorded by a high frequency microphone.

Access restricted. Please log in or start a trial to view this content.

Results

The simple CHL procedure was performed on 90 rats and out of this group 2 had significant bleeding and 2 did not have hearing loss the next day as assessed by behavioral clap startle. These four rats were discarded. Rats should be discarded as described by the reasons in the discussion due to complications. Inducing TM puncture and/or malleus displacement/removal (Figure 2B) elicits CHL, which results in behavioral manifestations (i.e. CHL - no response to lo...

Access restricted. Please log in or start a trial to view this content.

Discussion

We describe a simple surgical induction of CHL with verification using otoscope visualization and behavioral clap startle response in rat. Here we demonstrate the method on rat and previously this method has been applied to gerbils and mice. The method can easily be adopted to other rodents. Induction of CHL allows the study of a subtle form of hearing loss which manifests in auditory cortical alterations and psychophysical behavioral findings4,5,

Access restricted. Please log in or start a trial to view this content.

Disclosures

The authors declare no financial or non-financial conflicts of interests.

Acknowledgements

This work was supported in part by the Hong Kong Research Grants Council, Early Career Scheme, Project #21201217 to C. L., for the project Brain mapping guided electrophysiology with applications in hearing and noise pollution research. We thank the Posgrado en Ciencias Biomédicas, the Instituto de Neurobiología of the Universidad Nacional Autónoma de México (UNAM), the Consejo Nacional de Ciencia y Tecnología (CONACyT) México for the Graduate Fellowship 578458 to FAM Manno.

Access restricted. Please log in or start a trial to view this content.

Materials

NameCompanyCatalog NumberComments
Latex, polyvinyl or nitrile glovesAMMEXUse unpowdered gloves 8-mil
Micro spring scissors (see Fig. 1b)RWD Life ScienceS11035-088.0 cm total length, with 3.5mm cutting edge, or similar micro forceps. Standard tweezers with spring action will suffice
Otoscope mini 3000HEINE D-008.70.120MStandard LED otoscope will suffice
Rat or mouseJAX labsAny small rodent 
Small rodent cageTecniplast1284LNeed two cages to separate CHL rodent from hearing rodent. If rodents are in direct contact with one-another, they will startle each other. Cage dimensions 365 x 207 x 140 mm, floor area: 530 cm2/82.15 in2

References

  1. Shargorodsky, J., Curhan, S. G., Curhan, G. C., Eavey, R. Change in prevalence of hearing loss in US adolescents. The Journal of the American Medical Association. 304 (7), 772-778 (2010).
  2. Lucas, J. W., Schiller, J. S., Benson, V. Summary health statistics for U.S. adults: National health interview survey, 2001. National Center for Health Statistics. Vital and health statistics. 10 (218), 1-134 (2004).
  3. Gaffney, M., Green, D. R., Gaffney, C. Newborn hearing screening and follow-up: Aare children receiving recommended services? Public Health Reports. 125 (2), 199-207 (2010).
  4. Xu, H., Kotak, V. C., Sanes, D. H. Conductive hearing loss disrupts synaptic and spike adaptation in developing auditory cortex. The Journal of Neuroscience. 27 (35), 9417-9426 (2007).
  5. Buran, B. N., et al. A sensitive period for the impact of hearing loss on auditory perception. The Journal of Neuroscience. 34 (6), 2276-2284 (2014).
  6. Finck, A., Sofouglu, M. Auditory sensitivity of the Mongolian gerbil. The Journal of Auditory Research. 6, 313-319 (1966).
  7. Finck, A. Auditory sensitivity of the Mongolian Gerbil (Merionesunguiculatus). The Journal of the Acoustical Society of America. 41 (60), 1579(1967).
  8. Finck, A., Schneck, C. D., Hartman, A. F. Jr Development of auditory function in the Mongolian gerbil. The Journal of the Acoustical Society of America. 46 (1A), 107(1969).
  9. Ryan, A. Hearing sensitivity of the Mongolian gerbil, Meriones Unguiculatis. The Journal of the Acoustical Society of America. 59, 1222-1226 (1976).
  10. Dallos, P., Harris, D., Ozdamar, O., Ryan, A. Behavioral, compound action potential, and single unit thresholds: relationship in normal and abnormal ears. The Journal of the Acoustical Society of America. 64 (1), 151-157 (1978).
  11. Kelly, J. B., Potash, M. Directional responses to sounds in young gerbils (Meriones unguiculatus. Journal of Comparative Psychology. 100 (1), 37-45 (1986).
  12. Heffner, H. E., Koay, G., Heffner, R. S. Behavioral assessment of hearing in mice--conditioned suppression. Current Protocols in Neuroscience. , Chapter 8, Unit 8.21D (2006).
  13. Heffner, R. S., Koay, G., Heffner, H. E. Audiograms of five species of rodents: implications for the evolution of hearing and the perception of pitch. Hearing Research. 157 (1-2), 138-152 (2001).
  14. Lupo, E. J., Koka, K., Thornton, J. L., Tollin, D. J. The effects of experimentally induced conductive hearing loss on spectral and temporal aspects of sound transmission through the ear. Hearing Research. 272 (1-2), 30-41 (2011).
  15. Liberman, M. C., Liberman, L. D., Maison, S. F. Chronic conductive hearing loss leads to cochlear degeneration. PLoS One. 10 (11), e0142341(2015).
  16. Tucci, D. L., Cant, N. B., Durham, D. Conductive hearing loss results in a decrease in central auditory system activity in the young gerbil. Laryngoscope. 109, 1359-1371 (1999).
  17. Tucci, D. L., Cant, N. B., Durham, D. Effects of conductive hearing loss on gerbil central auditory system activity in silence. Hearing Research. 155, 124-132 (2001).
  18. Cook, R. D., Hung, T. Y., Miller, R. L., Smith, D. W., Tucci, D. L. Effects of conductive hearing loss on auditory nerve activity in gerbil. Hearing Research. 164, 127-137 (2002).
  19. Albuquerque, A. A., Rossato, M., Oliveira, J. A., Hyppolito, M. A. Understanding the anatomy of ears from guinea pigs and rats and its use in basic otologic research. Brazilian Journal of Otorhinolaryngology. 75, 43-49 (2009).
  20. Li, P., Gao, K., Ding, D., Salvi, R. Characteristic anatomical structures of rat temporal bone. Journal of Otology. 10, 118-124 (2015).
  21. Judkins, R. F., Li, H. Surgical anatomy of the rat middle ear. Otolaryngology-Head and Neck Surgery. 117, 438-447 (1997).
  22. Hellström, S., Salén, B., Stenfors, L. E. Anatomy of the rat middle ear. A study under the dissection microscope. Acta Anatomica (Basel). 112, 346-352 (1982).
  23. Albiin, N., Hellström, S., Salén, B., Stenfors, L. E., Wirell, S. The vascular supply of the rat tympanic membrane. The Anatomical Record. 212, 17-22 (1985).
  24. Li, P., Ding, D., Gao, K., Salvi, R. Standardized surgical approaches to ear surgery in rats. Journal of Otology. 10, 72-77 (2015).
  25. Johansson, U., Hellström, S., Anniko, M. Round window membrane in serous and purulent otitis media. Structural study in the rat. Annals of Otology, Rhinology & Laryngology. 102, 227-235 (1993).
  26. Magnuson, K., Hellström, S. Early structural changes in the rat tympanic membrane during pneumococcal otitis media. European Archives of Oto-Rhino-Laryngology. 251, 393-398 (1994).
  27. Hellström, S., Salén, B., Stenfors, L. E. The site of initial production and transport of effusion materials in otitis media serosa. A study on rat middle ear cavity. Acta Oto-Laryngologica. 93, 435-440 (1982).
  28. Shen, Y., et al. Scaffolds for tympanic membrane regeneration in rats. Tissue Engineering Part A. 19, 657-668 (2013).
  29. Wang, A. Y., et al. Rat model of chronic tympanic membrane perforation: Ventilation tube with mitomycin C and dexamethasone. International Journal of PediatricOtorhinolaryngology. 80, 61-68 (2016).
  30. Stenfeldt, K., Johansson, C., Hellström, S. The collagen structure of the tympanic membrane: collagen types I, II, and III in the healthy tympanic membrane, during healing of a perforation, and during infection. Archives of Otolaryngology--Head & Neck Surgery. 132, 293-298 (2006).
  31. Zhao, H., et al. Temporary conductive hearing loss in early life impairs spatial memory of rats in adulthood. Brain and Behavior. 8, e01004(2018).

Access restricted. Please log in or start a trial to view this content.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Surgical InductionConductive Hearing LossOtoscope VisualizationBehavioral Clap Startle ResponseRat ModelTympanic Membrane PunctureMalleus RemovalAnesthesiaSurgical ProcedureEthical Approval

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved