JoVE Logo
Faculty Resource Center

Sign In





Representative Results






Luminophore Formation in Various Conformations of Bovine Serum Albumin by Binding of Gold(III)

Published: August 31st, 2018



1Department of Physics and Optical Science, Center for Biomedical Engineering & Science, University of North Carolina

The protocols for studying the binding of gold cations (Au(III)) to various conformations of bovine serum albumin (BSA) as well as for characterizing the conformational dependent unique BSA-Au fluorescence are presented.

The purpose of the presented protocols is to study the process of Au(III) binding to BSA, yielding conformation change-induced red fluorescence (λem = 640 nm) of BSA-Au(III) complexes. The method adjusts the pH to show that the emergence of the red fluorescence is correlated with the pH-induced equilibrium transitions of the BSA conformations. Red fluorescent BSA-Au(III) complexes can only be formed with an adjustment of pH at or above 9.7, which corresponds to the "A-form" conformation of BSA. The protocol to adjust the BSA to Au molar ratio and to monitor the time-course of the process of Au(III) binding is described. The minimum number of Au(III) per BSA, to produce the red fluorescence, is less than seven. We describe the protocol in steps to illustrate the presence of multiple Au(III) binding sites in BSA. First, by adding copper (Cu(II)) or nickel (Ni(II)) cations followed by Au(III), this method reveals a binding site for Au(III) that is not the red fluorophore. Second, by modifying BSA by thiol capping agents, another nonfluorophore-forming Au(III) binding site is revealed. Third, changing the BSA conformation by cleaving and capping of the disulfide bonds, the possible Au(III) binding site(s) are illustrated. The protocol described, to control the BSA conformations and Au(III) binding, can be generally applied to study the interactions of other proteins and metal cations.

A BSA-Au compound exhibiting an ultraviolet (UV)-excitable red fluorescence, with remarkable stokes shift, has been originally synthesized by Xie et al.1. The unique and stable red fluorescence can find various applications in fields such as sensing2,3,4, imaging5,6,7, or nanomedicine8,9,10,11,12....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Synthesis of BSA-Au(III) Complex

  1. Dissolve 25 mg of BSA in 1 mL of high-performance liquid chromatography (HPLC) grade water in a 5 mL reaction vial.
    NOTE: The solution should appear clear.
  2. Dissolve gold (III) chloride trihydrate (chloroauric acid) to a concentration of 5 mM in HPLC grade water.
    NOTE: The solution should appear yellow. Chloroauric acid solution prepared at this concentration will result in a BSA to Au ratio of 1:13.
    1. Alternatively, prepare a solution of ch.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

From the fluorescence of the BSA-Au(III) complex, it has been observed that the conversion of the intrinsic blue fluorescence of BSA (λem = 400 nm) to red fluorescence (λem = 640 nm) occurs at about pH 9.7 through an equilibrium transition (Figure 1). EEM of BSA-Au(III) at different BSA to Au molar ratios is shown in Figure 2, and this data shows how altering the molar ratios yiel.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The BSA-Au(III) compounds prepared at pH 12 exhibit red fluorescence at an emission wavelength of λem= 640 nm when excited with ultraviolet (UV) light λex= 365 nm (Figure 1A). The emergence of red fluorescence is a slow process and will take a few days at room temperature to increase to a maximum intensity. Running the reaction at 37 °C will yield the optimum results, though higher temperature can be used to produce the red fluorescence faster. I.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

S.E. acknowledges the support from Duke Endowment Special Initiative Fund, Wells Fargo Fund, PhRMA Foundation, as well as Startup Funds from the University of North Carolina, Charlotte.


Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Bovine Serum Albumin (BSA), 96% Sigma-Aldrich A5611
gold (III) chloride trihydrate, 99.9% Sigma-Aldrich 520918
Copper (II) chloride dihydrate, 99.999% Sigma-Aldrich 459097
Nickel (II) chloride hexahydrate, 99.9% Sigma-Aldrich 654507
N-Ethylmaleimide (NEM), >99.0% Sigma-Aldrich 4259
Tris(2-carboxyethyl)phosphine hydrochloride (TCEP), >98.0% Sigma-Aldrich C4706
Sodium hydroxide, >98.0% Sigma-Aldrich S8045
Urea, 99.5% Chem-Implex Int'l 30142
Phospate buffered saline (PBS) Corning MT21040CV
Ammonium bicarbonate, 99.5% Sigma-Aldrich 9830

  1. Xie, J., Zheng, Y., Ying, J. Y. Protein-Directed Synthesis of Highly Fluorescent Gold Nanoparticles. Journal of the American Chemical Society. 131, 888-889 (2009).
  2. Saha, K., Agasti, S. S., Kim, C., Li, X., Rotello, V. M. Gold Nanoparticles in Chemical and Biological Sensing. Chemical Reviews. 112, 2739-2779 (2012).
  3. Zhang, Y., et al. New Gold Nanostructures for Sensor Applications: A Review. Materials. 7, 5169-5201 (2014).
  4. Chen, L. -. Y., Wang, C. -. W., Yuan, Z., Chang, H. -. T. Fluorescent Gold Nanoclusters: Recent Advances in Sensing and Imaging. Analytical Chemistry. 87 (1), 216-229 (2015).
  5. Cai, W., Gao, T., Hong, H., Sun, J. Applications of Gold Nanoparticles in Cancer Nanotechnology. Nanotechnology, Science and Applications. 1, 17-32 (2008).
  6. Nune, S. K., et al. Nanoparticles for Biomedical Imaging. Expert Opinion on Drug Delivery. 6, 1175-1194 (2009).
  7. Dorsey, J. F., et al. Gold Nanoparticles in Radiation Research: Potential Applications for Imaging and Radiosensitization. Translational Cancer Research. 2, 280-291 (2013).
  8. Daniel, M. -. C., Astruc, D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chemical Reviews. 104 (1), 293-346 (2004).
  9. Ferrari, M. Cancer Nanotechnology: Opportunities and Challenges. Nature Reviews Cancer. 5, 161-171 (2005).
  10. Huang, X., Jain, P. K., El-Sayed, I. H., El-Sayed, M. A. Gold Nanoparticles: Interesting Optical Properties and Recent Applications in Cancer Diagnostics and Therapy. Nanomedicine. 2, 681 (2007).
  11. Arvizo, R., Bhattacharya, R., Mukherjee, P. Gold Nanoparticles: Opportunities and Challenges in Nanomedicine. Expert Opinion on Drug Delivery. 7, 753-763 (2010).
  12. Doane, T. L., Burda, C. The Unique Role of Nanoparticles in Nanomedicine: Imaging, Drug Delivery and Therapy. Chemical Society Reviews. 41, 2885 (2012).
  13. Egusa, S., Ebrahem, Q., Mahfouz, R. Z., Saunthararajah, Y. Ligand Exchange on Gold Nanoparticles for Drug Delivery and Enhanced Therapeutic Index Evaluated in Acute Myeloid Leukemia Models. Experimental Biology and Medicine. 239, 853 (2014).
  14. Qu, X., et al. Fluorescent Gold Nanoclusters: Synthesis and Recent Biological Application. Journal of Nanomaterials. (784097), (2015).
  15. Chakraborty, I., Pradeep, T. Atomically Precise Clusters of Noble Metals: Emerging Link between Atoms and Nanoparticles. Chemical Reviews. 117, 8208-8271 (2017).
  16. Raut, S., et al. Evidence of energy transfer from tryptophan to BSA/HSA protected gold nanoclusters. Methods and Applications in Fluorescence. 2, (2014).
  17. Le Guével, X., Daum, N., Schneider, M. Synthesis and Characterization of Human Transferrin-Stabilized Gold Nanoclusters. Nanotechnology. 22 (27), (2011).
  18. Kawasaki, H., Yoshimura, K., Hamaguchi, K., Arakawa, R. Trypsin-Stabilized Fluorescent Gold Nanocluster for Sensitive and Selective Hg2+ Detection. Analytical Sciences. 27 (6), 591 (2011).
  19. Lu, D., et al. Lysozyme-Stabilized Gold Nanoclusters as a Novel Fluorescence Probe for Cyanide Recognition. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 121, 77-80 (2014).
  20. Dixon, J. M., Egusa, S. Conformational Change-Induced Fluorescence of Bovine Serum Albumin-Gold Complexes. Journal of the American Chemical Society. 140, 2265-2271 (2018).
  21. Peters, T. . All About Albumin. , (1996).
  22. Masuoka, J., Saltman, P. Zinc(II) and Copper(II) Binding to Serum Albumin. A Comparative Study of Dog, Bovine, and Human Albumin. Journal of Biological Chemistry. 269, 25557-25561 (1994).
  23. Takeda, K., Wada, A., Yamamoto, K., Moriyama, Y., Aoki, K. Conformational Change of Bovine Serum Albumin by Heat Treatment. Journal of Protein Chemistry. 8 (5), 653-659 (1989).
  24. Klotz, I. M., Curme, H. G. The Thermodynamics of Metallo-protein Combinations. Copper with Bovine Serum Albumin. Journal of the American Chemical Society. 70, 939-943 (1948).
  25. Fiess, H. A., Klotz, I. M. The Thermodynamics of Metallo-Protein Combinations. Comparison of Copper Complexes with Natural Proteins. J. Am. Chem. Soc. 74, 887-891 (1952).
  26. Rao, M. S. N. A Study of the Interaction of Nickel(II) with Bovine Serum Albumin. Journal of the American Chemical Society. 84, 1788-1790 (1962).
  27. Peters, T., Blumenstock, F. A. Copper-Binding Properties of Bovine Serum Albumin and Its Amino-terminal Peptide Fragment. Journal of Biological Chemistry. 242, 1574-1578 (1967).
  28. Xue, Y., Li, X., Li, H., Zhang, W. Quantifying Thiol-Gold Interactions towards the Efficient Strength Control. Nature Communications. 5, 4348 (2014).
  29. Xu, Y., et al. The Role of Protein Characteristics in the Formation and Fluorescence of Au Nanoclusters. Nanoscale. 6 (3), 1515-1524 (2014).

This article has been published

Video Coming Soon

JoVE Logo


Terms of Use





Copyright © 2024 MyJoVE Corporation. All rights reserved