JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Biology

Saccharomyces cerevisiae Exponentielles Wachstum Kinetik in Batch-Kultur, Atem- und fermentativen Stoffwechsel analysieren

Published: September 30th, 2018

DOI:

10.3791/58192

1Department of Chemistry, Universidad Autónoma de Querétaro, 2Department of Biochemical Engineering, Instituto Tecnológico de Morelia, 3Department of Biochemical Engineering, Instituto Tecnológico Superior de Ciudad Hidalgo

Hier präsentieren wir ein Protokoll, um die Atemwege und fermentativen Stoffwechsel durch den Einbau des exponentiellen Wachstums von Saccharomyces Cerevisiae exponentielles Wachstum Gleichung zu schätzen. Berechnung der kinetischen Parameter kann für das Screening der Einflüsse der Stoffe/Verbindungen auf Gärung oder mitochondriale Atmung.

Saccharomyces Cerevisiae Zellen in der exponentiellen Phase unterstützen ihr Wachstum durch die Produktion von ATP durch Gärung und/oder mitochondriale Atmung. Der vergärbaren Kohlenstoffgehalt regelt vor allem, wie die Hefezellen ATP erzeugen; so treibt die Variation in vergärbare Kohlenhydrate Ebenen den Energiestoffwechsel von S. Cerevisiae. Dieses Whitepaper beschreibt eine Hochdurchsatz-Methode basiert auf exponentielle Hefe Wachstum, die Auswirkungen von Änderungen der Konzentration und Art der Kohlenstoffquelle auf Atemwege und fermentativen Stoffwechsel zu schätzen. Das Wachstum von S. Cerevisiae ist in einer Mikrotestplatte gemessen oder geschüttelt konischen Kolben durch die Bestimmung der optischen Dichte (OD) bei 600 nm. Dann baut eine Wachstumskurve durch Plotten OD im Vergleich zur Zeit, was ermöglicht die Erkennung und Auswahl der exponentiellen Phase und ist ausgestattet mit der exponentiellen Wachstums-Gleichung, kinetische Parameter zu erhalten. Geringen spezifischen Wachstumsraten mit höheren Verdoppelung Zeit repräsentieren in der Regel eine respiratorische Wachstum. Im Gegensatz dazu zeigen höhere spezifische Wachstumsraten mit niedrigeren Verdoppelung Mal fermentative Wachstum. Grenzwerte der Verdoppelung der Zeit und spezifischen Wachstumsrate sind anhand der bekannteste Atem- oder fermentative Bedingungen wie nicht vergärbaren Kohlenstoffquellen oder höhere Konzentrationen an vergärbaren Zucker geschätzt. Dies ist für jede spezifische Belastung erreicht. Schließlich sind die berechneten kinetischen Parameter gegenüber der Schwellenwerte um festzustellen, ob die Hefe fermentative und/oder Atemwege Wachstum zeigt. Der Vorteil dieser Methode ist die relative Einfachheit für das Verständnis der Auswirkungen einer Substanz/Verbindung auf fermentative oder respiratorischen Stoffwechsel. Es ist wichtig, hervorzuheben, dass das Wachstum eines komplizierten und komplexen biologischen Verfahrens; vorläufige Daten aus dieser Methode müssen daher durch die Quantifizierung der Sauerstoffverbrauch und Akkumulation von Gärreste erhärtet werden. Dabei kann diese Technik als eine Vorauswahl von Verbindungen/Substanzen verwendet werden, die möglicherweise stören oder fermentativer oder respiratorischen Stoffwechsel.

Saccharomyces Cerevisiae Wachstum diente als ein wertvolles Werkzeug, Dutzende von physiologischen und molekularen Mechanismen zu identifizieren. Wachstum wird hauptsächlich durch drei Methoden gemessen: Verdünnungsreihen für Stichproben, koloniebildenden Stückzählen und Wachstumskurven. Diese Techniken können allein oder in Kombination mit einer Vielzahl von Substraten, Umweltbedingungen, Mutanten und Chemikalien verwendet werden, um konkrete Antworten oder Phänotypen zu untersuchen.

Mitochondriale Atmung ist ein biologischer Prozess, in dem Wachstum Kinetik erfolgreich angewendet wurde für die Entdeckung unbekannter Mechanismen. ....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

(1) Kultur, Medien und Inokulum Vorbereitung

  1. 100 mL 2 % Hefe-Extrakt-Pepton-Traubenzucker (YPD) flüssigen Medium vorbereiten (1 g Hefe-Extrakt, Kasein Pepton, 2 g und 2 g Glucose in 100 mL destilliertem Wasser hinzufügen). 3 mL der Medien in 15 mL sterilisierbare konische Rohre zu verzichten. Autoklaven der Medien für 15 min bei 121 ° C und 1,5 Psi.
    Hinweis: Der Datenträger kann bis zu einem Monat bei 4 – 8 ° c aufbewahrt werden
  2. Impfen Sie eine konische Rohr gefüllt mit 3 mL cool steril 2 .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Wachstumskurven lässt sich vorläufig zwischen Atem- und fermentative Phänotypen in der Hefe S. Cerevisiae zu unterscheiden. Daher führten wir Batch Kulturen von S. Cerevisiae (BY4742) mit verschiedenen Glukosekonzentration, die fermentative Wachstum induzieren gemeldet wurden: 1 %, 2 % und 10 % (w/V)9. Zeigt einen fermentativen Phänotyp Kulturen haben eine kleine Verzögerung und eine exponentielle Phase mit einer hohen Wachstumsrate (

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Eine lange Zeit ist vergangen, seit J. Monod10 zum Ausdruck gebracht, dass die Untersuchung des Wachstums von Bakterienkulturen die grundlegende Methode der Mikrobiologie. Das Aufkommen der Molekulare Werkzeuge verzögert die Nutzung und das Studium des Wachstums als eine Technik. Trotz der Komplexität des Wachstums die zahlreichen miteinander verbundenen Prozesse umfasst, können die zugrunde liegenden Mechanismen mithilfe mathematischer Modelle11beschrieben werden. Dies .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Dieses Projekt wurde unterstützt durch Zuschüsse des Consejo Nacional de Ciencia y Tecnología (Grant-Nummer 293940) und Fundación TELMEX-TELCEL (Grant-Nummer 162005585), beide IKOM.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
Orbital ShakerThermo Scientific4353For inoculum incubation or conical fask cultures
Bioscreen Growth curvesC MBRFor batch cultures in microplates
GlucoseSigma G7021For YPD broth preparation
Peptone from casein, enzymatic digestSigma 82303For YPD broth preparation
Yeast extractSigma 09182-1KG-FFor YPD broth preparation
Bacteriological AgarSigma A5306For YPD agar preparation
NaH2PO4Sigma S8282For SC broth preparation
(NH4)2SO4Sigma A4418For SC broth preparation
Yeast nitrogen base without amino acids and ammonium sulfateSigma Y1251For SC broth preparation
Yeast synthetic drop-Out medium supplementsSigma Y1501For SC broth preparation
Ammonium sulfate granularJ.T. Baker0792-RFor medium supplementation example
ResveratrolSigma R5010For medium supplementation example
GalactoseSigma G8270For medium supplementation example
SucroseSigma S7903For medium supplementation example
Absolut ethanolMerck107017For medium supplementation example
GlycerolJ.T. Baker2136-01For medium supplementation example
GraphPad PrismGraphPad SoftwareFor data analysis
Honeycomb microplatesThermo Scientific9502550For microplate cultures

  1. Parrella, E., Longo, V. D. The chronological life span of Saccharomyces cerevisiae to study mitochondrial dysfunction and disease. Methods. 46 (4), 256-262 (2008).
  2. Rosas Lemus, M., et al. The role of glycolysis-derived hexose phosphates in the induction of the Crabtree effect. Journal of Biological Chemistry. , (2018).
  3. Xu, X. D., et al. Warburg effect or reverse Warburg effect? A review of cancer metabolism. Oncology Research and Treatment. 38 (3), 117-122 (2015).
  4. De Deken, R. H. The Crabtree effect: a regulatory system in yeast. Journal of General Microbiology. 44 (2), 149-156 (1966).
  5. Hagman, A., Sall, T., Piskur, J. Analysis of the yeast short-term Crabtree effect and its origin. The FEBS Journal. 281 (21), 4805-4814 (2014).
  6. Hammad, N., Rosas-Lemus, M., Uribe-Carvajal, S., Rigoulet, M., Devin, A. The Crabtree and Warburg effects: Do metabolite-induced regulations participate in their induction?. Biochim Biophys Acta. 1857 (8), 1139-1146 (2016).
  7. Keating, E., Martel, F. Antimetabolic Effects of Polyphenols in Breast Cancer Cells: Focus on Glucose Uptake and Metabolism. Frontiers in Nutrition. 5, 25 (2018).
  8. Pfeiffer, T., Morley, A. An evolutionary perspective on the Crabtree effect. Frontiers in Molecular Biosciences. 1, 17 (2014).
  9. Olivares-Marin, I. K., et al. Interactions between carbon and nitrogen sources depend on RIM15 and determine fermentative or respiratory growth in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology. 102 (10), 4535-4548 (2018).
  10. Monod, J. The growth of bacterial cultures. Annual Review of Microbiology. 3 (1), 371-394 (1949).
  11. Cui, S., Xu, S. Analysis of mathematical models for the growth of tumors with time delays in cell proliferation. Journal of Mathematical Analysis and Applications. 336 (1), 523-541 (2007).
  12. Benzekry, S., et al. Classical mathematical models for description and prediction of experimental tumor growth. Public Library of Science Computational Biology. 10 (8), e1003800 (2014).
  13. Ramos-Gomez, M., et al. Resveratrol induces mitochondrial dysfunction and decreases chronological life span of Saccharomyces cerevisiae in a glucose-dependent manner. Journal of Bioenergetics and Biomembranes. 49 (3), 241-251 (2017).
  14. Madrigal-Perez, L. A., et al. Energy-dependent effects of resveratrol in Saccharomyces cerevisiae. Yeast. 33 (6), 227-234 (2016).
  15. Peleg, M., Corradini, M. G. Microbial growth curves: what the models tell us and what they cannot. Critical Reviews in Food Science and Nutrition. 51 (10), 917-945 (2011).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved