A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Here, we describe protocols for the genetic and chemical validation of c-Fos and Dusp1 as a drug target in leukemia using in vitro and in vivo genetic and humanized mouse models. This method can be applied to any target for genetic validation and therapeutic development.
The demonstration of tyrosine kinase inhibitors (TKIs) in treating chronic myeloid leukemia (CML) has heralded a new era in cancer therapeutics. However, a small population of cells does not respond to TKI treatment, resulting in minimal residual disease (MRD); even the most potent TKIs fail to eradicate these cells. These MRD cells serve as a reservoir to develop resistance to therapy. Why TKI treatment is ineffective against MRD cells is not known. Growth factor signaling is implicated in supporting the survival of MRD cells during TKI treatment, but a mechanistic understanding is lacking. Recent studies demonstrated that an elevated c-Fos and Dusp1 expression as a result of convergent oncogenic and growth factor signaling in MRD cells mediate TKI resistance. The genetic and chemical inhibition of c-Fos and Dusp1 renders CML exquisitely sensitive to TKIs and cures CML in both genetic and humanized mouse models. We identified these target genes using multiple microarrays from TKI-sensitive and -resistant cells. Here, we provide methods for target validation using in vitro and in vivo mouse models. These methods can easily be applied to any target for genetic validation and therapeutic development.
Constitutive tyrosine kinase activity of BCR-ABL1 fusion oncogene causes CML, which provides a rationale to target the kinase activity by small molecule inhibitors. The success of TKIs in treating CML patients revolutionized the concept of targeted therapy1,2. Subsequently, anti-kinase therapy as precision medicine was developed for several other malignancies, including solid tumors. So far, more than thirty kinase inhibitors have been approved by the United State FDA for treating various malignancies. While TKI treatment is very effective in suppressing the disease, it is not curative. Besides, a small population of cancer cells persists during the treatment: the MRD3,4,5. Even patients who showed complete remission are left with MRD, which eventually results in relapse if not continuously suppressed. Therefore, the eradication of MRD cells is needed to achieve a durable or curative response. CML represents a valuable paradigm for defining the concept of precision medicine, mechanisms of oncogenesis, rational target-directed therapeutics, disease progression, and drug resistance. However, even today, the mechanism driving TKI-induced cell death in cancer cells is not fully understood, nor why MRD cells (comprised of leukemic stem cells [LSCs]) are intrinsically resistant to TKIs4,6. Nonetheless, the phenomenon of "oncogene dependence" to mutant kinase oncoprotein is implicated in TKI efficacy where the acute inhibition of targeted oncogene by TKIs causes an oncogenic shock that leads to a massive proapoptotic response or quiescence in cell context-dependent manner6,7,8,9. However, the mechanistic underpinning of oncogene dependence is lacking. Recent studies have implicated that growth factor signaling abrogates oncogene dependence and consequently confers resistance to TKI therapy10,11,12. Therefore, to gain insight into the mechanism of oncogene dependence, we performed whole-genome expression profiling from BCR-ABL1 addicted and nonaddicted cells (grown with growth factors), which revealed that c-Fos and Dusp1 are critical mediators of oncogene addiction13. The genetic deletion of c-Fos and Dusp1 is synthetic lethal to BCR-ABL1-expressing cells and the mice used in the experiment did not develop leukemia. Moreover, the inhibition of c-Fos and DUSP1 by small molecule inhibitors cured BCR-ABL1-induced CML in mice. The results show that the expression levels of c-Fos and Dusp1 define the apoptotic threshold in cancer cells, such that lower levels confer drug sensitivity while higher levels cause resistance to therapy13.
To identify the genes driving the oncogene dependence, we performed several whole-genome expression profiling experiments in the presence of growth factor and a TKI (imatinib) using both mouse- and CML patient-derived cells (K562). These data were analyzed in parallel with CML patient data sets obtained from CD34+ hematopoietic stem cells before and after treatment with imatinib. This analysis revealed three genes (a transcription factor [c-Fos], dual specificity phosphatase 1 [Dusp1], and an RNA-binding protein [Zfp36]) which are commonly upregulated in TKI-resistant cells. To validate the significance of these genes in conferring drug resistance, we carried out step-by-step in vitro and in vivo analysis. The expression levels of these genes were confirmed by real-time qPCR (RT-qPCR) and western blotting in drug-resistant cells. Further, cDNA overexpression and knockdown by shRNA hairpins of c-Fos, Dusp1, and Zfp36 revealed that elevated c-Fos and Dusp1 expressions are sufficient and necessary to confer TKI resistance. Therefore, we performed an in vivo validation using mouse models with c-Fos and Dusp1 only. For the genetic validation of c-Fos and Dusp1, we created ROSACreERT-inducible c-Fosfl/fl mice (conditional knockout)14 and crossed them with Dusp1-/- (straight knockout)15 to make ROSACreERT2-c-Fosfl/flDusp1-/- double-transgenic mice. Bone marrow-derived c-Kit+ cells (from c-Fosfl/fl-, Dusp1-/--, and c-Fosfl/flDusp1-/-) expressing BCR-ABL1 were analyzed in vitro in a colony-forming unit (CFU) assay, and in vivo by bone marrow transplantation in lethally irradiated mice, to test the requirement of c-Fos and Dusp1 alone or together in leukemia development. Likewise, the chemical inhibitions of c-Fos by DFC (difluorinated curcumin)16 and Dusp1 by BCI (benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one)17 were tested in vitro and in vivo using BCR-ABL1-expressing, bone marrow-derived c-Kit+ cells from the wild-type (WT) mouse. To confirm the requirement of c-Fos and Dusp1 in leukemic stem cells, we utilized a CML mouse model where BCR-ABL1 was specifically induced in its stem cells by doxycycline (Tet-transactivator expresses under murine stem cell leukemia (SCL) gene 3' enhancer regulation)18,19. We used bone marrow Lin-Sca+c-Kit+ (LSK) cells from these mice in an in vivo transplant assay. Furthermore, we established phopsho-p38 levels and the expression of IL-6 as pharmaco-dynamic biomarkers for Dusp1 and c-Fos inhibition, respectively, in vivo. Finally, to extend the study for human relevance, patient-derived CD34+ cells (equivalent to the c-Kit+ cells from mice) were subjected to long-term in vitro culture-initiating cell assays (LTCIC) and an in vivo humanized mouse model of CML20,21. The immunodeficient mice were transplanted with CML CD34+ cells, followed by drug treatment and analysis of human leukemic cell survival.
In this project, we develop methods for target identification and validations using both genetic and chemical tools, using different preclinical models. These methods can be successfully applied to validate other targets developing chemical modalities for therapeutic development.
All animal experiments were carried out according to the guidelines of the Institutional Animal Care and Use Committee (IACUC) at Cincinnati Children's Hospital Medical Center (CCHMC). Human specimens (Normal BM and that from CML (p210-BCR-ABL+) leukemia) were obtained through Institutional Review Board-approved protocols (Institutional Review Board: Federalwide Assurance #00002988 Cincinnati Children's Hospital Medical Center) and donor-informed consent from CCHMC and the University of Cincinnati.
1. Real-time qPCR Analysis
2. Western Blotting
NOTE: Whole-cell extracts were prepared by adding 250 µL of 1x lysis buffer as described in Kesarwani et al.13 supplemented with a protease inhibitor cocktail, and phosphatase inhibitor cocktail 2.
3. Generation of Knockout Mice
4. Isolation of c-Kit+ Cells from Bone Marrow
5. Transduction
6. Colony-forming UnitAssays
7. Transplantation and Mortality Assay
8. Transgenic Mice Model of BCR-ABL1 Leukemia
9. In Vivo Evaluation of BCI and DFC Activity
10. Long-term Culture-Initiating Cell Assay
NOTE: An LTCIC assay was performed as described previously25.
11. Humanized Mouse Model Using CML CD34+ Cells
Oncogene addiction has been implicated in the therapeutic efficacy of TKIs. However, the mechanisms driving the oncogene dependence are not understood. We performed multiple unbiased gene expression analyses to identify the genetic component involved in orchestrating the addiction. These analyses revealed the upregulation of three genes, c-Fos, Dusp1, and Zfp36, in cancer cells that are not dependent on oncogenic signaling for survival and, thus, are insensitive to TKI treatment. The down...
For the bulk of cancer cells, the therapeutic response to TKI is mediated by a blockade of tyrosine-kinase-oncoprotein signals to which the tumor is addicted. However, relatively little is known about how a minority of cancer cells contributing to MRD escape the oncogene dependence and therapy4. Recent studies revealed that growth factor signaling mediates drug resistance in both leukemia and solid organ tumors. This suggests that various molecular mechanisms might underlie intrinsic resistance
The authors have nothing to disclose.
The authors are thankful to G. Q. Daley for providing the BaF3 and WEHI cells and T. Reya for the MSCV-BCR-ABL-Ires-YFP constructs. The authors are thankful to M. Carroll for providing the patient samples from the CML blast crisis. This study was supported by grants to M.A. from the NCI (1RO1CA155091), the Leukemia Research Foundation and V Foundation, and from the NHLBI (R21HL114074-01).
Name | Company | Catalog Number | Comments |
Biological Materials | |||
RPMI | Cellgro (corning) | 15-040-CV | |
DMEM | Cellgro (corning) | 15-013-CV | |
IMDM | Cellgro (corning) | 15-016-CVR | |
RetroNectin Recombinant Human Fibronectin Fragment | Takara | T100B | |
MethoCult GF M3434 (Methylcellulose for Mouse CFU) | Stem Cell | 3434 | |
MethoCult H4434 Classic (Methylcellulose for Human CFU) | Stem Cell | 4434 | |
4-Hydroxytamoxifen | Sigma | H6278 | |
Recombinant Murine SCF | Prospec | CYT-275 | |
Recombinant Murine Flt3-Ligand | Prospec | CYT-340 | |
Recombinant Murine IL-6 | Prospec | CYT-350 | |
Recombinant Murine IL-7 | Peprotech | 217-17 | |
DFC | LKT Laboratories Inc. | D3420 | |
BCI | Chemzon Scientific | NZ-06-195 | |
Imatinib | LC Laboratory | I-5508 | |
Curcumin | Sigma | 458-37-7 | |
NDGA | Sigma | 500-38-9 | |
Penn/Strep | Cellgro (corning) | 30-002-CI | |
FBS | Atlanta biological | S11150 | |
Trypsin EDTA 1x | Cellgro (corning) | 25-052-CI | |
1x PBS | Cellgro (corning) | 21-040-CV | |
L-Glutamine | Cellgro (corning) | 25-005-CL | 5 mg/mL stock in water |
Puromycin | Gibco (life technologies) | A11138-03 | |
HEPES | Sigma | H7006 | |
Na2HPO4.7H2O | Sigma | S9390 | |
Protamine sulfate | Sigma | P3369 | 5 mg/mL stock in water |
Trypan Blue solution (0.4%) | Sigma | T8154 | |
DMSO | Cellgro (corning) | 25-950-CQC | |
WST-1 | Roche | 11644807001 | |
0.45 μM acro disc filter | PALL | 2016-10 | |
70 μm nylon cell stariner | Becton Dickinson | 352350 | |
FICOL (Histopaque 1083) (polysucrose) | Simga | 1083 | |
PBS | Corning | 21040CV | |
LS Columns | Miltenyi | 130-042-401 | |
Protease Inhibitor Cocktail | Roche | CO-RO | |
Phosphatase Inhibitor Cocktail 2 | Sigma | P5762 | |
Nitrocullulose Membrane | Bio-Rad | 1620115 | |
SuperSignal West Dura Extended Duration Substrate ( chemiluminiscence substrate) | Thermo Scientific | 34075 | |
CD5 | eBioscience | 13-0051-82 | |
CD11b | eBioscience | 13-0112-75 | |
CD45R (B220) | BD biosciences | 553092 | |
CD45.1-FITC | eBioscience | 11-0453-85 | |
CD45.2-PE | eBioscience | 12-0454-83 | |
hCD45-FITC | BD Biosciences | 555482 | |
Anti-Biotin-FITC | Miltenyi | 130-090-857 | |
Anti-7-4 | eBioscience | MA5-16539 | |
Anti-Gr-1 (Ly-6G/c) | eBioscience | 13-5931-82 | |
Anti-Ter-119 | eBioscience | 13-5921-75 | |
Ly-6 A/E (Sca1) PE Cy7 | BD | 558612 | |
CD117 APC | BD | 553356 | |
BD Pharm Lyse | BD | 555899 | |
BD Cytofix/Cytoperm (Fixing and permeabilization solution) | BD | 554714 | |
BD Perm/Wash (permeabilization and wash solution for phospho flow) | BD | 554723 | |
phospho p38 | Cell Signaling Technologies | 4511S | |
total p38 | Cell Signaling Technologies | 9212 | |
Mouse IgG control | BD | 554121 | |
Alexa Flour 488 conjugated | Invitrogen | A-11034 | |
Calcium Chloride | Invitrogen | K278001 | |
2x HBS | Invitrogen | K278002 | |
EDTA | Ambion | AM9261 | |
BSA | Sigma | A7906 | |
Blood Capillary Tubes | Fisher | 22-260-950 | |
Blood Collection Tube | Giene Bio-One | 450480 | |
Newborn Calf Serum | Atlanta biological | S11295 | |
Erythropoiein | Amgen | 5513-267-10 | |
human SCF | Prospec | CYT-255 | |
Human IL-3 | Prospec | CYT-210 | |
G-SCF | Prospec | CYT-220 | |
GM-CSF | Prospec | CYT-221 | |
MyeloCult (media for LTCIC assay) | Stem Cell Technologies | 5100 | |
Hydrocortisone Sodium Hemisuccinate | Stem Cell Technologies | 7904 | |
MEM alpha | Gibco | 12561-056 | |
1/2 cc Lo-Dose u-100 insulin syringe 28 G1/2 | Becton Dickinson | 329461 | |
Mortor pestle | Coor tek | 60316 and 60317 | |
Isoflorane (Isothesia TM) | Butler Schien | 29405 | |
SOC | New England Biolabs | B90920s | |
Ampicillin | Sigma | A0166 | 100 mg/mL stock in water |
Bacto agar (agar) | Difco | 214050 | |
Terrific broth | Becton Dickinson | 243820 | |
Agarose | Genemate | E-3119-500 | |
Doxycycline chow | TestDiet.com | 52662 | modified RMH1500, Autoclavable 5LK8 with 0.0625% Doxycycline |
Tamoxifen | Sigma | T5648 | |
Iodonitrotetrazolium chloride | Sigma | I10406 | |
Kits | |||
Dneasy Blood & tissue kit | Qiagen | 69506 | |
GoTaq Green (taq polymerase with Green loadign dye) | Promega | M1722 | |
miRNeasy Mini Kit (RNA isolation kit) | Qiagen | 217084 | |
DNA Free Dnase Kit (DNAse treatment for RT PCR) | Ambion, Life Technologies | AM1906 | |
Superscript III First Strand Synthesis (reverse transcriptase for cDNA synthesis) | Invitrogen | 18080051 | |
SYBR Green (taq polymerase mix with green interchalating dye for qPCR) | Bio-Rad | 1725270 | |
CD117 MicroBead Kit | Miltenyi | 130-091-224 | |
Human Long-Term Culture Initiating Cell Assay | Stemp Cell Technologies | ||
Instruments | |||
NAPCO series 8000 WJ CO2 incubator | Thermo scientific | ||
Swing bucket rotor cetrifuge 5810R | Eppendorf | ||
TC-10 automated cell counter | Bio-RAD | ||
C-1000 Thermal cycler | Bio-RAD | ||
Mastercycler Real Plex 2 | Eppendorf | ||
ChemiDoc Imaging System (imaging system for gels and western blots) | Bio-RAD | 17001401 | |
Hemavet (boold counter) | Drew-Scientific | ||
LSR II (FACS analyzer) | BD | ||
Fortessa I (FACS analyzer) | BD | ||
FACSAriaII (FACS Sorter) | BD | ||
Magnet Stand | Miltenyi | ||
Irradiator | J.L. Shepherd and Associates, San Fernando CA | Mark I Model 68A | source Cs 137 |
Mice | |||
ROSACreERT2 | Jackson Laboratory | ||
Scl-tTA | Dr. Claudia Huettner’s lab | ||
BoyJ | mouse core facility at CCHMC | ||
C57Bl/6 | Jackson Laboratory | ||
NSGS | mouse core facility at CCHMC | ||
ROSACreERT2/c-Fosfl/fl Dusp1-/- | Made in house | ||
ROSACreERT2/c-Fosfl/fl | Made in house | ||
Cells | |||
BaF3 | Gift from George Daley, Harvard Medical School, Boston | ||
WEHI | Gift from George Daley, Harvard Medical School, Boston | ||
CML-CD34+ and Normal CD34+ cells | University Hospital, University of Cincinnati |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved