JoVE Logo
Faculty Resource Center

Sign In

Abstract

Medicine

Autonomic Function Following Concussion in Youth Athletes: An Exploration of Heart Rate Variability Using 24-hour Recording Methodology

Published: September 21st, 2018

DOI:

10.3791/58203

1Concussion Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, 2Faculty of Kinesiology and Physical Education, University of Toronto, 3Rehabilitation Sciences Institute, Faculty of Medicine, University of Toronto, 4Department of Occupational Science and Occupational Therapy, Faculty of Medicine, University of Toronto

Participation in organized sports makes a significant contribution to youth development, but places youth at a higher risk for sustaining a concussion. To date, return-to-activity decision-making has been anchored in the monitoring of self-reported concussion symptoms and neurocognitive testing. However, multi-modal assessments that corroborate objective physiological measures with traditional subjective symptom reporting are needed and can be valuable. Heart rate variability (HRV) is a non-invasive physiological indicator of the autonomic nervous system, capturing the reciprocal interplay between the sympathetic and parasympathetic nervous systems. There is a dearth of literature exploring the effect of concussion on HRV in youth athletes, and developmental differences preclude the application of adult findings to a pediatric population. Further, the current state of HRV methodology has primarily included short-term (5-15 min) recordings, by using resting state or short-term physical exertion testing to elucidate changes following concussion. The novelty in utilizing a 24 h recording methodology is that it has the potential to capture natural variation in autonomic function, directly related to the activities a youth athlete performs on a regular basis. Within a prospective, longitudinal research setting, this novel approach to quantifying autonomic function can provide important information regarding the recovery trajectory, alongside traditional self-report symptom measures. Our objectives regarding a 24 h recording methodology were to (1) evaluate the physiological effects of a concussion in youth athletes, and (2) describe the trajectory of physiological change, while considering the resolution of self-reported post-concussion symptoms. To achieve these objectives, non-invasive sensor technology was implemented. The raw beat-to-beat time intervals captured can be transformed to derive time domain and frequency domain measures, which reflect an individual's ability to adapt and be flexible to their ever-changing environment. By using non-invasive heart rate technology, autonomic function can be quantified outside of a traditional controlled research setting.

Tags

Keywords Autonomic Function

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved