Sign In

In This Article

  • Abstract
  • Reprints and Permissions

Abstract

Ovarian granulosa cells (GC) are the major source of estradiol synthesis. Induced by the preovulatory luteinizing hormone (LH) surge, cells of the theca and, in particular, of the granulosa cell layer profoundly change their morphological, physiological, and molecular characteristics and form the progesterone-producing corpus luteum that is responsible for maintaining pregnancy. Cell culture models are essential tools to study the underlying regulatory mechanisms involved in the folliculo-luteal transformation. The presented protocol focuses on the isolation procedure and cryopreservation of bovine GC from small- to medium-sized follicles (< 6 mm). With this technique, a nearly pure population of GC can be obtained. The cryopreservation procedure greatly facilitates time management of the cell culture work independent of a direct primary tissue (ovaries) supply. This protocol describes a serum-free cell culture model that mimics the estradiol-active status of bovine GC. Important conditions that are essential for a successful steroid-active cell culture are discussed throughout the protocol. It is demonstrated that increasing the plating density of the cells induces a specific response as indicated by an altered gene expression profile and hormone production. Furthermore, this model provides a basis for further studies on GC differentiation and other applications.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Keywords Tissue CultureEstrogen producingPrimary Bovine Granulosa CellsCryopreservationCell IsolationFollicular FluidGranulosa CellsCell CultureRNADNAProtein AnalysisCell FreezingCell ThawingAlpha MEM

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved