JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here, we present a protocol to record telemetric electroencephalograms (EEGs) from freely moving piglets directly in the pigpen without the use of a sedative, making it possible to record typical EEG patterns during non-REM sleep, like spindle bursts.

Abstract

The method allows the recording of high-quality electroencephalograms (EEGs) from freely moving piglets directly in the pigpen. We use a one-channel telemetric electroencephalography system in combination with standard self-adhesive hydrogel electrodes. The piglets are calmed down without the use of sedatives. After their release into the pigpen, the piglets behave normally—they drink and sleep in the same cycle as their siblings. Their sleep phases are used for the EEG recordings.

Introduction

Piglets are an emerging model system for neuroscience1. In order to strengthen translational research, we invented a method to record non-invasive, clinical EEGs from unrestrained piglets2 (Figure 1 and Figure 2). Two prerequisites for a translational use of EEG recordings, regarding EEG patterns associated with cortical maturation, are a non-invasive methodology, comparable to the clinical setting, and the abstinence of sedatives or anesthesia. The one-channel telemetry system3 in combination with self-adhesive electrodes can be fixed in about 5 min. Afterward, the piglets will recover quickly from the handling procedure and synchronize their feeding and sleeping behavior to that of the other piglets and the sow.

Even though there are already attempts to use non-invasive EEG recordings from sedated animals4, most electroencephalography studies from animals are conducted with invasive approaches. These methods have side effects regarding inflammatory processes around the implanted electrodes5,6 and, in most cases, they require a social separation of the animals due to the external components of the implanted EEG system. Hence, the translation of these data to the clinical context is difficult. The need for translational approaches is becoming clear by the fact that it is still not known how a "normal" brain maturation during the early cortical development is represented by clinical, non-invasive electroencephalography7. This knowledge gap is caused by technical challenges associated with EEG recordings from preterm babies8. In animal model systems, patterns of early cortical development are better accessible, since most animals are born with a "preterm brain" in comparison to human cortical development9. Besides conserved patterns of cortical development across species2, it has recently been shown that EEG recordings from preterm babies can also predict the individual clinical outcome during later life10,11. The method described here is especially useful for the translational aspects of developmental neuroscience.

Protocol

All procedures were approved by the local ethics committee (#23177-07/G10-1-010/G 15-15-011) and followed the European and the German national regulations (European Communities Council Directive, 86/609/ECC; Tierschutzgesetz).

All animal procedures were performed in accordance with the Medical Center of the Johannes Gutenberg-University Mainz animal care committee's regulations.

1. Setup

  1. Prior to the experiment, check for any line noise and find an adequate location for the set-up and the antenna. Line noise is visible as a 60 or 50 Hz sine wave.
    NOTE: The placement of the antenna and especially the distance between the transmitter and the receiver depends on the transmission strength of the system. The system used here is adjustable. It was adjusted to a relatively low power, with an approximately 3 m transmission range. Additionally, the metallic fences in the pigpen can dampen the signal and cause interferences. In this case, it is necessary to place the antenna inside the metal cage.
  2. Use a cable drum to supply the set-up with line power. Connect the laptop, the receiver unit, and the analog-to-digital converter (if necessary) for the specific telemetry system that is being used.
    NOTE: The telemetry system used here sent digital data to the receiver. This might be different for other systems.
  3. Place the electrodes, the adhesives, the Q-tips, and the wipes, as well as the mixing blocks, on a separate table.
  4. Prepare the electrodes with short cables. To do so, cut the electrodes and solder them again with a length as short as possible, depending on the size of the animal. The cables must be long enough to connect the desired recording positions on the head with the telemetric EEG unit, transmitting the data. Cables that are too long must be recoiled and covered with skin adhesive silicone elastomer. Longer cables that must be recoiled make the silicone patch bigger and heavier.

2. Piglet

  1. Catch a piglet by grabbing it at the leg or at the thorax. Hold it and be aware of any defecation or urination.
  2. If necessary, mark the piglet with a number.
  3. Wrap the piglet in a towel. The piglet will calm down. Be aware of overheating the piglet.
  4. Hold the piglet with one hand at the body or forearm. Use the other hand to hold the snout. Be aware of overheating the piglet and make sure it is free to breathe properly.

3. Electrodes

  1. Have a second person attach the electrodes.
  2. Clean the skin from dirt with water or ethanol. If necessary, shave the head.
  3. Remove any dead skin cells with an abrasive EEG gel and a Q-tip. Remove the abrasive gel afterward. Alternatively, use sandpaper.
  4. Fix the self-adhesive electrodes at the desired location. Place the ground electrode above the cerebellum (between the ears) and the reference electrode on the nose. Place the recording electrode at the desired location.
    NOTE: In this case, a unipolar recording was performed, because the reference was placed at a neutral position (nose). There is no standardized system available for piglets until now. Here, a parietal recording position was used (between the eye and the ear) on the right brain hemisphere.
  5. Connect the cables to the telemetry unit. Turn the unit on. Depending on the telemetry system used, this might be a magnetic switch or a radio frequency wake-up signal.
  6. Cover the telemetry unit and all cables as well as all electrodes with two-component skin adhesive silicone rubber (see Table of Materials). By mixing equal amounts of both components, the curing time will be in the range of 1 min. Eyes and eyelashes should not be covered with the rubber.
  7. Wait until the silicone rubber is completely cured.
  8. Place the piglet back in the pigpen.
  9. Observe the piglet to see if it is showing signs of discomfort over a longer period of time (several minutes).

4. Measurement

  1. Wait until the piglet has recovered and starts to synchronize its behavior with that of its siblings (feeding, playing, sleeping), usually after 30 s (Figure 1).
  2. Wait for sleep phases, if desired. The recording time depends on the specific scientific question. Here, 10 min recording sessions were used.
  3. If the telemetry unit is covered by more than 2 other piglets, the signal might be too low for the receiver. Gently push the piglets away if they are sleeping on top. Be aware of the sow; it might react aggressively.
  4. Start the recording with the data acquisition software (see Table of Materials).

5. Finish

  1. After the recording (usually several hours), catch the piglet again as has been described in step 2. Be aware of the sow; it might react aggressively.
  2. Gently lift the silicone rubber at one edge. Then, remove the whole patch of silicone rubber containing the electrodes and the telemetry unit. Be careful with the piglet's eyes.
  3. Place the piglet back in the pigpen.

Results

We were able to record typical EEG patterns associated with non-REM sleep, like spindle bursts or delta brushes, from freely moving piglets (Figure 1 and Figure 2). We were mostly interested in representative patterns during non-REM sleep, but phases of REM-like sleep12 with a very low amplitude have also been recorded (Figure 3). The physiology and the amount of REM sleep dif...

Discussion

A critical step in the protocol is the adequate skin contact with the electrodes, especially the ground electrode, to achieve stable recordings with low noise. Furthermore, since piglets are very agile, it is important to cover the whole system with silicone rubber to protect the electrodes and the telemetry unit. Furthermore, if the experiments are conducted in a stable with a slatted floor, be cautious with small devices or connectors.

In case of an inadequate grip of the self-adhesive hydro...

Disclosures

The authors have nothing to disclose.

Acknowledgements

We would like to thank Helmut Scheu for the opportunity to conduct our research in the pigpen at Hofgut Neumühle.

Materials

NameCompanyCatalog NumberComments
Disposable adhesive
surface silver/silver chloride electrodes
Spes
Medica S.r.l., Genova, Italy
Self adhesive hydrogel electrode
Abralyt HiClEasycap GmbHAbrasive cream
Body Double fastSmooth On Inc.Skin adhesive silicone
Telemetry systemInternal development
Picolog 1216Pico TechnologyAD converter
LaptopPanasonicRugged laptop
ReceiverInternal development

References

  1. Conrad, M. S., Sutton, B. P., Dilger, R. N., Johnson, R. W. An in vivo three-dimensional magnetic resonance imaging-based averaged brain collection of the neonatal piglet (Sus scrofa). PLoS ONE. 9 (9), e107650 (2014).
  2. de Camp, N. V., Hense, F., Lecher, B., Scheu, H., Bergeler, J. Models for preterm cortical development using non invasive clinical EEG. Translational Neuroscience. 8, 211-224 (2017).
  3. Lapray, D., Bergeler, J., Dupont, E., Thews, O., Luhmann, H. J., Barculo, D., Daniels, J. A novel telemetric system for recording brain activity in small animals. Telemetry: Research, Technology and Applications. , 195-203 (2009).
  4. Kim, D., Yeon, C., Kim, K. Development and experimental validation of a dry non- invasive multi-channel mouse scalp EEG sensor through visual evoked potential recordings. Sensors. 17, 326 (2017).
  5. Moshayedi, P., et al. The relationship between glial cell mechanosensitivity and foreign body reactions in the central nervous system. Biomaterials. 35, 3919-3925 (2014).
  6. Barrese, J. C., et al. Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates. Journal of Neural Engineering. 10, 066014 (2013).
  7. Hellström-Westas, L., Rosén, I. Electroencephalography and brain damage in preterm infants. Early Human Development. 81, 255-261 (2005).
  8. Lloyd, R. O., Goulding, R. M., Filan, P. M., Boylan, G. B. Overcoming the practical challenges of electroencephalography for very preterm infants in the neonatal intensive care unit. Acta Paediatrica. , 152-157 (2015).
  9. Clancy, B., Finlay, B. L., Darlington, R. B., Anand, K. J. Extrapolating brain development from experimental species to humans. Neurotoxicology. 28, 931-937 (2007).
  10. Iyer, K. K., et al. Cortical burst dynamics predict clinical outcome early in extremely preterm infants. Brain. 138, 2206-2218 (2015).
  11. Luhmann, H., de Camp, N., Bergeler, J. Monitoring brain activity in preterms: mathematics helps to predict clinical outcome. Brain. 138, 2114-2125 (2015).
  12. Dragomir, A., Akay, Y., Curran, A. K., Akay, M. Complexity measures of the central respiratory networks during wakefulness and sleep. Journal of Neural Engineering. 5, 254-261 (2008).
  13. Peever, J., Fuller, P. M. The biology of REM sleep. Current Biology. 27, R1237-R1248 (2017).
  14. Robert, S., Dallaire, A. Polygraphic Analysis of the sleep-wake states and the REM Sleep periodicity in domesticated pigs (Sus scrofa). Physiology & Behavior. 37 (2), 289-293 (1986).

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Noninvasive EEGPigletsCortical DevelopmentTelemetry SystemRecording ElectrodesSkin AdhesiveSleep PhaseBehavioral Synchronization

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved