A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Here, we present a protocol to record telemetric electroencephalograms (EEGs) from freely moving piglets directly in the pigpen without the use of a sedative, making it possible to record typical EEG patterns during non-REM sleep, like spindle bursts.
The method allows the recording of high-quality electroencephalograms (EEGs) from freely moving piglets directly in the pigpen. We use a one-channel telemetric electroencephalography system in combination with standard self-adhesive hydrogel electrodes. The piglets are calmed down without the use of sedatives. After their release into the pigpen, the piglets behave normally—they drink and sleep in the same cycle as their siblings. Their sleep phases are used for the EEG recordings.
Piglets are an emerging model system for neuroscience1. In order to strengthen translational research, we invented a method to record non-invasive, clinical EEGs from unrestrained piglets2 (Figure 1 and Figure 2). Two prerequisites for a translational use of EEG recordings, regarding EEG patterns associated with cortical maturation, are a non-invasive methodology, comparable to the clinical setting, and the abstinence of sedatives or anesthesia. The one-channel telemetry system3 in combination with self-adhesive electrodes can be fixed in about 5 min. Afterward, the piglets will recover quickly from the handling procedure and synchronize their feeding and sleeping behavior to that of the other piglets and the sow.
Even though there are already attempts to use non-invasive EEG recordings from sedated animals4, most electroencephalography studies from animals are conducted with invasive approaches. These methods have side effects regarding inflammatory processes around the implanted electrodes5,6 and, in most cases, they require a social separation of the animals due to the external components of the implanted EEG system. Hence, the translation of these data to the clinical context is difficult. The need for translational approaches is becoming clear by the fact that it is still not known how a "normal" brain maturation during the early cortical development is represented by clinical, non-invasive electroencephalography7. This knowledge gap is caused by technical challenges associated with EEG recordings from preterm babies8. In animal model systems, patterns of early cortical development are better accessible, since most animals are born with a "preterm brain" in comparison to human cortical development9. Besides conserved patterns of cortical development across species2, it has recently been shown that EEG recordings from preterm babies can also predict the individual clinical outcome during later life10,11. The method described here is especially useful for the translational aspects of developmental neuroscience.
All procedures were approved by the local ethics committee (#23177-07/G10-1-010/G 15-15-011) and followed the European and the German national regulations (European Communities Council Directive, 86/609/ECC; Tierschutzgesetz).
All animal procedures were performed in accordance with the Medical Center of the Johannes Gutenberg-University Mainz animal care committee's regulations.
1. Setup
2. Piglet
3. Electrodes
4. Measurement
5. Finish
We were able to record typical EEG patterns associated with non-REM sleep, like spindle bursts or delta brushes, from freely moving piglets (Figure 1 and Figure 2). We were mostly interested in representative patterns during non-REM sleep, but phases of REM-like sleep12 with a very low amplitude have also been recorded (Figure 3). The physiology and the amount of REM sleep dif...
A critical step in the protocol is the adequate skin contact with the electrodes, especially the ground electrode, to achieve stable recordings with low noise. Furthermore, since piglets are very agile, it is important to cover the whole system with silicone rubber to protect the electrodes and the telemetry unit. Furthermore, if the experiments are conducted in a stable with a slatted floor, be cautious with small devices or connectors.
In case of an inadequate grip of the self-adhesive hydro...
The authors have nothing to disclose.
We would like to thank Helmut Scheu for the opportunity to conduct our research in the pigpen at Hofgut Neumühle.
Name | Company | Catalog Number | Comments |
Disposable adhesive surface silver/silver chloride electrodes | Spes Medica S.r.l., Genova, Italy | Self adhesive hydrogel electrode | |
Abralyt HiCl | Easycap GmbH | Abrasive cream | |
Body Double fast | Smooth On Inc. | Skin adhesive silicone | |
Telemetry system | Internal development | ||
Picolog 1216 | Pico Technology | AD converter | |
Laptop | Panasonic | Rugged laptop | |
Receiver | Internal development |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved