JoVE Logo
Faculty Resource Center

Sign In

Abstract

Biology

Synthesis of 68Ga Core-doped Iron Oxide Nanoparticles for Dual Positron Emission Tomography /(T1)Magnetic Resonance Imaging

Published: November 20th, 2018

DOI:

10.3791/58269

1Nanobiotechnology, Molecular Imaging and Metabolomics Lab, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 2CIC biomaGUNE and CIBER de Enfermedades Respiratorias (CIBERES). Ikerbasque, Basque Foundation for Science, Universidad Complutense de Madrid (UCM), 3Advanced Imaging Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), CIBER de Enfermedades Respiratorias (CIBERES)

Here, we describe a microwave synthesis to obtain iron oxide nanoparticles core-doped with 68Ga. Microwave technology enables fast and reproducible synthetic procedures. In this case, starting from FeCl3 and citrate trisodium salt, iron oxide nanoparticles coated with citric acid are obtained in 10 min in the microwave. These nanoparticles present a small core size of 4.2 ± 1.1 nm and a hydrodynamic size of 7.5 ± 2.1 nm. Moreover, they have a high longitudinal relaxivity (r1) value of 11.9 mM-1·s-1 and a modest transversal relaxivity value (r2) of 22.9 mM-1·s-1, which results in a low r2/r1 ratio of 1.9. These values enable positive contrast generation in magnetic resonance imaging (MRI) instead of negative contrast, commonly used with iron oxide nanoparticles. In addition, if a 68GaCl3 elution from a 68Ge/68Ga generator is added to the starting materials, a nano-radiotracer doped with 68Ga is obtained. The product is obtained with a high radiolabeling yield (> 90%), regardless of the initial activity used. Furthermore, a single purification step renders the nano-radiomaterial ready to be used in vivo.

Tags

Keyword Extraction 68Ga

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved