JoVE Logo
Faculty Resource Center

Sign In





Representative Results






Apparatus for Harvesting Tissue Microcolumns

Published: October 25th, 2018



1Wellman Center for Photomedicine, Massachusetts General Hospital, 2Department of Dermatology, Harvard Medical School

Here we describe a protocol for producing harvesting needles that can be used to collect full-thickness skin tissue without causing donor site scarring. The needles can be combined with a simple collection system to achieve high-volume harvesting.

This manuscript describes the production process for a laboratory apparatus, made from off-the-shelf components, that can be used to collect microcolumns of full-thickness skin tissue. The small size of the microcolumns allows donor sites to heal quickly without causing donor site scarring, while harvesting full-thickness tissue enables the incorporation of all cellular and extracellular components of skin tissue, including those associated with deeper dermal regions and the adnexal skin structures, which have yet to be successfully reproduced using conventional tissue engineering techniques. The microcolumns can be applied directly into skin wounds to augment healing, or they can be used as the autologous cell/tissue source for other tissue engineering approaches. The harvesting needles are made by modifying standard hypodermic needles, and they can be used alone for harvesting small amounts of tissue or coupled with a simple suction-based collection system (also made from commonly available laboratory supplies) for high-volume harvesting to facilitate studies in large animal models.

Autologous skin grafting is the mainstay of wound repair, but it is limited by donor site scarcity and morbidity, leading to concerted efforts in recent decades to develop new therapeutic options to replace conventional skin grafting1,2. We recently developed an alternative method of harvesting skin to harness the benefits of full-thickness skin grafting while minimizing donor site morbidity. By collecting full-thickness skin in the form of small (~0.5 mm diameter) "microcolumns", donor sites are able to heal rapidly and without scarring under normal circumstances (for potential exceptions, see the dis....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

All work involving live animals and animal tissue samples have been approved by the Massachusetts General Hospital Institutional Animal Care and Use Committee (IACUC).

1. Production of Harvesting Needles

  1. Setup of the production stage
    1. Secure a female luer lock connector onto a post, and mount the post onto a rotation stage so that the luer lock is at the center of the stage (Figure 1A).
    2. Position this first rotatio.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The harvesting needles should be able to collect microcolumns of full-thickness skin tissue with approximately a 80-90% success rate, and each microcolumn should contain epidermis, dermis, and some subcutaneous fat (Figure 4). If the success rate of harvesting is low, or if it becomes difficult to insert a needle into tissue, then a new needle is likely needed. If the success rate for harvesting is consistently low, even with new needles, then the needles are.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The methods described here are intended to enable the collection of tissue microcolumns in sufficient quantities for in vivo large animal studies, using tools made from commercially available laboratory supplies. This apparatus has been used previously in harvesting tissue from excised human skin4,9 as well as live swine skin3. The specific parameters described are those that were found to be most suited for use in swine. It is ex.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This work was supported in part by the Army, Navy, NIH, Air Force, VA and Health Affairs to support the AFIRM II effort, under Award No. W81XWH-13-2-0054. The U.S. Army Medical Research Acquisition Activity, 820 Chandler Street, Fort Detrick, MD 21702-5014 is the awarding and administering acquisition office. Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the Department of Defense.


Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Diamond wheel Dremel 545
Hypodermic needle (19G) Fisher Scientific 14-840-98 Other needle sizes could be used, depending on experimental needs
Stome wheel Dremel 540
Syringe (20mL with luer lock) Fisher Scientific 22-124-967
Suction adapter Tulip Medical PA20BD Optional, for high volume harvesting
Suction canister Fisher Scientific 19-898-212 Optional, for high volume harvesting. Sterilize before use.
Suction tubing Medline DYND50216H Optional, for high volume harvesting

  1. Sun, B. K., Siprashvili, Z., Khavari, P. A. Advances in skin grafting and treatment of cutaneous wounds. Science. 346 (6212), 941-945 (2014).
  2. Singh, M., et al. Challenging the Conventional Therapy: Emerging Skin Graft Techniques for Wound Healing. Plastic and Reconstructive Surgery. 136 (4), 524-530 (2015).
  3. Tam, J., et al. Fractional Skin Harvesting: Autologous Skin Grafting without Donor-site Morbidity. Plastic and Reconstructive Surgery. Global Open. 1 (6), 47 (2013).
  4. Tam, J., et al. Reconstitution of full-thickness skin by microcolumn grafting. Journal of Tissue Engineering and Regenerative Medicine. 11 (10), 2796-2805 (2017).
  5. Huang, C., et al. Regeneration of hair and other skin appendages: A microenvironment-centric view. Wound Repair and Regeneration. 24 (5), 759-766 (2016).
  6. Fernandes, J. R., et al. Micro-mechanical fractional skin rejuvenation. Plastic and Reconstructive Surgery. 131 (2), 216-223 (2013).
  7. Rettinger, C. L., Fletcher, J. L., Carlsson, A. H., Chan, R. K. Accelerated epithelialization and improved wound healing metrics in porcine full-thickness wounds transplanted with full-thickness skin micrografts. Wound Repair and Regeneration. 25 (5), 816-827 (2017).
  8. Franco, W., et al. Fractional skin harvesting: device operational principles and deployment evaluation. Journal of Medical Devices. 8 (4), 041005 (2014).
  9. Rasmussen, C. A., et al. Chimeric autologous/allogeneic constructs for skin regeneration. Military Medicine. 179, 71-78 (2014).
  10. Ter Horst, B., Chouhan, G., Moiemen, N. S., Grover, L. M. Advances in keratinocyte delivery in burn wound care. Advanced Drug Delivery Reviews. 123, 18-32 (2018).
  11. Wong, V. W., Levi, B., Rajadas, J., Longaker, M. T., Gurtner, G. C. Stem cell niches for skin regeneration. International Journal of Biomaterials. 2012, 926059 (2012).
  12. Manstein, D., Herron, G. S., Sink, R. K., Tanner, H., Anderson, R. R. Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury. Lasers in Surgery and Medicine. 34 (5), 426-438 (2004).
  13. Iriarte, C., Awosika, O., Rengifo-Pardo, M., Ehrlich, A. Review of applications of microneedling in dermatology. Clinical, Cosmetic and Investigational Dermatology. 10, 289-298 (2017).
  14. Anderson, R. R., et al. Laser treatment of traumatic scars with an emphasis on ablative fractional laser resurfacing: consensus report. Journal of the American Medical Association Dermatology. 150 (2), 187-193 (2014).
  15. Hogan, S., Velez, M. W., Ibrahim, O. Microneedling: a new approach for treating textural abnormalities and scars. Seminars in Cutaneous Medicine and Surgery. 36 (4), 155-163 (2017).
  16. Manuskiatti, W., Fitzpatrick, R. E., Goldman, M. P. Long-term effectiveness and side effects of carbon dioxide laser resurfacing for photoaged facial skin. Journal of the American Academy of Dermatology. 40 (3), 401-411 (1999).

This article has been published

Video Coming Soon

JoVE Logo


Terms of Use





Copyright © 2024 MyJoVE Corporation. All rights reserved